Search the data

Metadata Report for BODC Series Reference Number 2026852


Metadata Summary

Data Description

Data Category Surface temp/sal
Instrument Type
NameCategories
Sea-Bird SBE 45 MicroTSG thermosalinograph  thermosalinographs; water temperature sensor; salinity sensor
Sea-Bird SBE 38 thermometer  water temperature sensor
Instrument Mounting research vessel
Originating Country South Africa
Originator Dr Margaux Noyon
Originating Organization Nelson Mandela University, Institute for Coastal and Marine Research
Processing Status banked
Online delivery of data Download available - Ocean Data View (ODV) format
Project(s) SOLSTICE-WIO
 

Data Identifiers

Originator's Identifier EK181_SURF
BODC Series Reference 2026852
 

Time Co-ordinates(UT)

Start Time (yyyy-mm-dd hh:mm) 2018-10-15 18:00
End Time (yyyy-mm-dd hh:mm) 2018-10-18 13:29
Nominal Cycle Interval 60.0 seconds
 

Spatial Co-ordinates

Southernmost Latitude 34.94517 S ( 34° 56.7' S )
Northernmost Latitude 33.88917 S ( 33° 53.4' S )
Westernmost Longitude 18.26750 E ( 18° 16.0' E )
Easternmost Longitude 22.75100 E ( 22° 45.1' E )
Positional Uncertainty 0.0 to 0.01 n.miles
Minimum Sensor or Sampling Depth 3.6 m
Maximum Sensor or Sampling Depth 3.6 m
Minimum Sensor or Sampling Height -
Maximum Sensor or Sampling Height -
Sea Floor Depth -
Sea Floor Depth Source -
Sensor or Sampling Distribution Fixed common depth - All sensors are grouped effectively at the same depth which is effectively fixed for the duration of the series
Sensor or Sampling Depth Datum Approximate - Depth is only approximate
Sea Floor Depth Datum -
 

Parameters

BODC CODERankUnitsTitle
AADYAA011DaysDate (time from 00:00 01/01/1760 to 00:00 UT on day)
AAFDZZ011DaysTime (time between 00:00 UT and timestamp)
ACYCAA011DimensionlessSequence number
ALATGP011DegreesLatitude north relative to WGS84 by unspecified GPS system
ALONGP011DegreesLongitude east relative to WGS84 by unspecified GPS system
PSALSU011DimensionlessPractical salinity of the water body by thermosalinograph and computation using UNESCO 1983 algorithm and NO calibration against independent measurements
TEMPHU011Degrees CelsiusTemperature of the water body by thermosalinograph hull sensor and NO verification against independent measurements

Definition of Rank

  • Rank 1 is a one-dimensional parameter
  • Rank 2 is a two-dimensional parameter
  • Rank 0 is a one-dimensional parameter describing the second dimension of a two-dimensional parameter (e.g. bin depths for moored ADCP data)

Problem Reports

No Problem Report Found in the Database

EK181 Sea Surface Hydrography Quality Control Report

Sea Surface Temperature

The most recent calibration to the sea surface temperature sensor was applied seven years prior to this cruise and therefore, the data should be used with caution.

Salinity

It is not known when the salinity sensor was last calibrated and therefore, the data should be used with caution.


Data Access Policy

Open Data supplied by Natural Environment Research Council (NERC)

You must always use the following attribution statement to acknowledge the source of the information: "Contains data supplied by Natural Environment Research Council."


Narrative Documents

SeaBird Digital Oceanographic Thermometer SBE38

The SBE38 is an ultra-stable thermistor that can be integrated as a remote temperature sensor with an SBE21 Thermosalinograph or an SBE 45 Micro TSG, or as a secondary temperature sensor with an SBE 16 plus, 16plus-IM, 16plus V2, 16plus-IM V2 or 19plus V2 SEACAT CTD.

Temperature is determined by applying an AC excitation to reference resistances and an ultra-stable aged thermistor. The reference resistor is a hermetically sealed VISHAY. AC excitation and ratiometric comparison using a common processing channel removes measurement errors due to parasitic thermocouples, offset voltages, leakage currents and gain errors.

The SBE38 can operate in polled sampling, where it takes one sample and transmits the data, or in continuous sampling.

Specifications

Depth rating up to 10500 m
Temperature range -5 to 35°C
Initial accuracy ± 0.001°C
Resolution 0.00025°C
Stability 0.001°C in 6 months
Response time 500 ms
Self-heating error < 200 µK

Further details can be found in the manufacturer's specification sheet.

EK181 Surface Hydrography Instrument Description Document

The sea surface hydrographical suite of sensors was fed by the pumped-seawater, non-toxic supply. The seawater intake was located at 3.6 m below the sea surface. The following surface hydrology sensors were fitted:

Manufacturer Model Main Function Serial number Last calibration date Comments
Sea Bird Electronics SBE45 Thermosalinograph - - Serial number and calibration date not available
Sea Bird Electronics SBE38 Sea Surface Temperature 0611 08/02/2011 Manufacturer calibration applied

SeaBird MicroTSG Thermosalinograph SBE 45

The SBE45 MicroTSG is an externally powered instrument designed for shipboard measurement of temperature and conductivity of pumped near-surface water samples. The instrument can also compute salinity and sound velocity internally.

The MicroTSG comprises a platinum-electrode glass conductivity cell and a stable, pressure-protected thermistor temperature sensor. It also contains an RS-232 port for appending the output of a remote temperature sensor, allowing for direct measurement of sea surface temperature.

The instrument can operate in Polled, Autonomous and Serial Line Sync sampling modes:

  • Polled sampling: the instrument takes one sample on command
  • Autonomous sampling: the instrument samples at preprogrammed intervals and does not enter quiescence (sleep) state between samples
  • Serial Line Sync: a pulse on the serial line causes the instrument to wake up, sample and re-enter quiescent state automatically

Specifications

  Conductivity Temperature Salinity
Range 0 to 7 Sm-1 -5 to 35°C  
Initial accuracy 0.0003 Sm-1 0.002°C 0.005 (typical)
Resolution 0.00001 Sm-1 0.0001°C 0.0002 (typical)
Typical stability (per month) 0.0003 Sm-1 0.0002°C 0.003 (typical)

Further details can be found in the manufacturer's specification sheet.

EK181 Surface Hydrography Processing Procedures Document

Originator's Data Processing

The sea surface hydrography measurements were performed by a Sea Bird electronics thermosalinograph in the ship's flow through system during the EK181 cruise. The data were processed by the originator and submitted to BODC as a single GOSUD formatted NetCDF file.

The table below shows the original files delivered to BODC that contained the data in the final data series, along with start and end dates and times of each file.

File delivered to BODC

Filename Content description Format Interval Start date/time (UTC) End date/time (UTC) Comments
EK181_TSG_ColdRidgeCruise1_V2.1.nc Sea surface temperature and salinity NetCDF 60 seconds 15/10/2018 18:00:00 18/11/2018 13:29:00 -

BODC Data Processing

The files were reformatted to BODC internal format using standard data banking procedures. All files were averaged to 60 second intervals. The following table shows how the variables within thefiles were mapped to appropriate BODC parameter codes:

EK181_TSG_ColdRidgeCruise1_V2.1.nc

Originator's variable Originator's units Description BODC Code BODC Units Unit conversion Comments
SSPS pss-78 TSG salinity PSALSU01 psu N/A -
SSTP deg C Sea surface temperature TEMPHU01 celsius N/A -

All the reformatted data were visualised using the in-house EDSERPLO software. Suspect data were marked by adding an appropriate quality control flag.

Calibrations

Field Calibrations

No calibration against independent variables were applied to these data.


Project Information

SOLSTICE-WIO: Sustainable Oceans, Livelihoods and food Security Through Increased Capacity in Ecosystem research in the Western Indian Ocean

Introduction

SOLSTICE-WIO is a four-year collaborative project funded by the UK Global Challenges Research Fund (GCRF). Launched in October 2017, it brings together recent advances in marine technologies, local knowledge and research expertise to address challenges facing the Western Indian Ocean region in a cost-effective way via state-of-the-art technology transfer, collaborative environmental and socio-economic research and hands-on training.

Over 100 million people in the Western Indian Ocean (WIO) region live within 100km of the coast, with over 1 million working in the fisheries sector. The WIO is highly dependent on the ocean for economic stability, food security, and social cohesion. In recent years, the region has seen dramatic and often poorly understood reductions in key fisheries, due to the combined effects of climate change, natural ecosystem variability, overfishing and degradation of key marine habitats. Until the mechanisms behind the collapse are understood, there is little potential for aiding recovery or guiding adaptation. The key to stability of living marine resources lies in an ecosystem approach to fisheries (EAF), which sees human-natural systems as a whole, integrated entity rather than separately considering individual target species. Understanding and managing WIO fisheries and the impacts of recent and future changes requires a mature capacity to implement an ecosystem approach to fisheries management (EAF) that is built on sound environmental and socio-economic information.

The core strength of SOLSTICE-WIO lies in its integral approach to food security, drawing on UK expertise in physical oceanography, marine ecology, autonomous observations, environmental economics and the human dimension,and WIO expertise in fisheries, the marine economy and regional policy development. SOLSTICE will provide the region with the state-of-the-art technology to deliver cost-effective marine research and provide the information needed to achieve maximum potential from the region's living marine resources. In the UK marine robotics, ocean models and novel data products from satellite observations have developed rapidly in the last decade, and now underpin Blue Economies and Ocean Governance in Europe. These technologies are highly agile and ready to be applied in the developing world as cost-effective ways to maximise understanding and sustainable exploitation of living marine resources. Such "technology leapfrogging" can overcome the severe lack of research ships in the WIO and save decades of effort in developing predictive modelling systems from scratch.

Scientific Objectives

SOLSTICE-WIO main objectives are to:

  1. Grow marine environmental research capability to address challenges facing the WIO region in a cost-effective way via state-of-the-art technology transfer, collaborative environmental and socio-economic research, and hands-on training.
  2. Strengthen the capacity of UK marine scientists to apply leading-edge technologies in developing countries, and work with regional and local experts to ensure that their research addresses local and regional needs.
  3. Strengthen the ability of WIO scientists to effectively deliver evidence-based environmental and socio-economic information to support policy development and implementation at national and regional levels.
  4. Ensure future sustainability of marine research capability in the region by training and mentoring early career scientists and post-graduate students from the WIO and by developing on-line resources for use in distance learning and hands-on training of marine scientists outside the partner organisations and beyond the duration of the project.
  5. Ensure on-going support for an Ecosystem Approach to Fisheries in the WIO by building lasting strategic research partnerships between UK marine science and regional centres of excellence, between these centres and other WIO research organisations, and between marine scientist and government agencies and NGOs mandated to deliver sustainable development and exploitation of marine living resources in the WIO.

Fieldwork

SOLSTICE-WIO will demonstrate its approach to strengthening research capacity through three case studies in Kenya, Tanzania and South Africa. These have been selected by SOLSTICE-WIO partners in each of the three countries.

  • Tanzania Case Study: Pemba Channel small pelagic fishery under climate threat.

    The small pelagic fishery is important for local communities in Zanzibar and mainland Tanzania as a source of food security, nutrition and livelihood support. This diverse group includes mackerel, sardines and anchovies â?? found in schools over the continental shelf, in bays and deep lagoons with nutrient rich waters. They are more abundant during the southeast monsoon, when stronger winds drive upwelling that brings nutrient rich water to the surface.

    Despite its importance for coastal economies, there is a lack of data and information about the fishery, which hampers effective management. Using robotics, modelling, remote sensing, field observations and socio-economic studies, SOLSTICE will identify key environmental and anthropogenic drivers of the main species and address climatic pressures on this fishery.

  • Kenya Case Study: Emerging fishery of the North Kenya Bank, an opportunity for coastal populations.

    The North Kenya Bank fishery is expected to spur economic growth for local communities. If well managed, it could help achieve national development goals, including poverty alleviation and wealth creation. Sustainability requires informed management interventions, but there is only scant information on the ecological status and drivers of the fishery.

    Using modelling, remote sensing, field observations and socio-economic studies, SOLSTICE will explore processes related to productivity and resilience of the ecosystems supporting the fishery, identify the main drivers of variability and change, and advise the fishery and government on how to optimise use of this important resource.

  • South Africa Case Study: Environmental drivers and socio-economic consequences of the South African Chokka squid fishery collapsing.

    The collapse of the Chokka squid fishery in 2013 had a devastating effect on the Eastern Cape, one of the poorest provinces in South Africa. The reasons for the collapse are unknown, although local fishermen believe it happened as a result of environmental change.

    SOLSTICE will address key environmental and anthropogenic factors controlling the ecosystem dynamics of the Agulhas Bank. The results will help explain why the fishery collapsed, and inform the fishery and government as to whether the current recovery is stable, or whether similar collapses are likely in the future.

BODC image

Project Collaborators

The science delivered as part of SOLSTICE-WIO is greatly enhanced by the collaboration of the following institutions:

  • National Oceanography Centre (NOC)
  • Plymouth Marine Laboratory (PML)
  • Scottish Association for Marine Science (SAMS)
  • Heriot-Watt University
  • Imperative Space
  • Nelson Mandela University (NMU)
  • South African Squid Management Industry Association
  • Rhodes University
  • South African Environmental Observation Network
  • University of Cape Town
  • Institute of Marine Sciences (IMS)
  • Western Indian Ocean Marine Science Association
  • Tanzania Fisheries Research Institute (TAFIRI)
  • Environment for Development - Tanzania (EfDT)
  • WWF Tanzania
  • Kenya Marine and Fisheries Research Institute (KMFRI)
  • Coastal Oceans Research and Development â?? Indian Ocean
  • University of Seychelles
  • Mozambique National Institute of Fisheries Research
  • Institut Halieutique et des Sciences Marines (IH.SM)

SOLSTICE-WIO Leadership Team

Directors

  • Prof Mike Roberts (Nelson Mandela University (NMU), South Africa)
  • Dr Katya Popova (National Oceanography Centre (NOC), UK)

Members

  • Prof Julius Francis (Western Indian Ocean Marine Science Association (WIOMSA), Tanzania)
  • Dr Yohana W. Shaghude (Institute of Marine Sciences (IMS), Tanzania)
  • Dr Baraka Sekadende (Tanzania Fisheries Research Institute (TAFIRI), Tanzania)
  • Dr Joseph Kamau (Kenya Marine and Fisheries Research Institute (KMFRI), Kenya)
  • Prof Warwick Sauer (Rhodes University (Rhodes), South Africa)
  • Dr Eleni Papathanasopoulou (Plymouth Marine Laboratory (PML), UK)
  • Dr Matthew Palmer (National Oceanography Centre (NOC), UK)
  • Dr Val Byfield (National Oceanography Centre (NOC), UK)
  • Sofia Alexiou (National Oceanography Centre (NOC), UK)

Funding

This is a NERC funded research project. The total value of the grant is £6,934,488 and the period of award is from September 4th 2017 to March 3rd 2020. NERC Reference: NE/P021050/1


Data Activity or Cruise Information

Cruise

Cruise Name EK181
Departure Date 2018-10-15
Arrival Date 2018-10-18
Principal Scientist(s)Margaux Noyon (Nelson Mandela University, Institute for Coastal and Marine Research)
Ship Ellen Khuzwayo

Complete Cruise Metadata Report is available here


Fixed Station Information


No Fixed Station Information held for the Series


BODC Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
Blank Unqualified
< Below detection limit
> In excess of quoted value
A Taxonomic flag for affinis (aff.)
B Beginning of CTD Down/Up Cast
C Taxonomic flag for confer (cf.)
D Thermometric depth
E End of CTD Down/Up Cast
G Non-taxonomic biological characteristic uncertainty
H Extrapolated value
I Taxonomic flag for single species (sp.)
K Improbable value - unknown quality control source
L Improbable value - originator's quality control
M Improbable value - BODC quality control
N Null value
O Improbable value - user quality control
P Trace/calm
Q Indeterminate
R Replacement value
S Estimated value
T Interpolated value
U Uncalibrated
W Control value
X Excessive difference

SeaDataNet Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
0 no quality control
1 good value
2 probably good value
3 probably bad value
4 bad value
5 changed value
6 value below detection
7 value in excess
8 interpolated value
9 missing value
A value phenomenon uncertain
B nominal value
Q value below limit of quantification