Metadata Report for BODC Series Reference Number 26820


Metadata Summary

Data Description

Data Category Currents -subsurface Eulerian
Instrument Type
NameCategories
Aanderaa RCM 4/5 Recording Current Meter  current meters
Instrument Mounting subsurface mooring
Originating Country United Kingdom
Originator -
Originating Organization Institute of Coastal Oceanography and Tides (now National Oceanography Centre, Liverpool)
Processing Status banked
Project(s) -
 

Data Identifiers

Originator's Identifier C4
BODC Series Reference 26820
 

Time Co-ordinates(UT)

Start Time (yyyy-mm-dd hh:mm) 1971-08-13 23:00
End Time (yyyy-mm-dd hh:mm) 1971-09-12 10:03
Nominal Cycle Interval 1800.0 seconds
 

Spatial Co-ordinates

Latitude 59.76660 N ( 59° 46.0' N )
Longitude 4.64990 W ( 4° 39.0' W )
Positional Uncertainty 0.5 to 1.0 n.miles
Minimum Sensor Depth 79.0 m
Maximum Sensor Depth 79.0 m
Minimum Sensor Height 25.0 m
Maximum Sensor Height 25.0 m
Sea Floor Depth 104.0 m
Sensor Distribution Fixed common depth - All sensors are grouped effectively at the same depth which is effectively fixed for the duration of the series
Sensor Depth Datum Sea floor reference - Depth measured as a height above sea floor but converted into a depth relative to the sea surface according to the same datum as used for sea floor depth (applicable to instrument depths not bathymetric depths)
Sea Floor Depth Datum Instantaneous - Depth measured below water line or instantaneous water body surface
 

Parameters

BODC CODE Rank Units Short Title Title
AADYAA01 1 Days Date(Loch_Day) Date (time from 00:00 01/01/1760 to 00:00 UT on day)
AAFDZZ01 1 Days Time(Day_Fract) Time (time between 00:00 UT and timestamp)
LCDAEL01 1 Degrees True CurrDir Current direction (Eulerian) in the water body by in-situ current meter and correction to true North
LCSAEL01 1 Centimetres per second CurrSpd_CM Current speed (Eulerian) in the water body by in-situ current meter
 

Definition of Rank

  • Rank 1 is a one-dimensional parameter
  • Rank 2 is a two-dimensional parameter
  • Rank 0 is a one-dimensional parameter describing the second dimension of a two-dimensional parameter (e.g. bin depths for moored ADCP data)

Problem Reports

No Problem Report Found in the Database


Data Access Policy

Open Data supplied by Natural Environment Research Council (NERC)

You must always use the following attribution statement to acknowledge the source of the information: "Contains data supplied by Natural Environment Research Council."


Narrative Documents

Aanderaa Recording Current Meter Model 4/5

Manufacturer's specifications: Meter (recording unit: height 51cm, diameter 12.8cm, vane size 37x100cm; overall: length 137cm, height 75cm) is designed for depths down to 2000m (6000m RCM model 5). It incorporates a spindle which is shackled into the mooring line. The meter is attached to the spindle through a gimbal mounting which permits a maximum 27° deviation of the spindle from the vertical, the meter still remaining horizontal.

Meter comprises :-

  1. Savonius rotor magnetically coupled to an electronic counter - the number of revolutions during the sampling interval giving the average current speed over the interval - starting speed 2cm/s (users find 1.5 to 3cm/s), range 2.5 to 250cm/s, accuracy greater of 1cm/s or 2 per cent.

  2. Vane, which aligns instrument with current flow, has a balance weight ensuring static balance and tail fins to ensure dynamic balance in flows up to 250cm/s.

  3. Magnetic compass (needle is clamped to potentiometer ring at instant of sampling only) - direction recorded with 0.35° resolution, 5° accuracy (1.5° claimed by MAFF, Lowestoft) for speeds 5 to 100cm/s, 7.5° accuracy for remaining speeds within 2.5 to 200cm/s range, maximum compass tilt (i.e. maximum deviation of the meter from the horizontal at which the meter still registers correctly) is 12° in both pitch and roll axes.

  4. Quartz clock, accuracy better than 2sec/day within temperature range 0 to 20°C.

  5. Thermistor (temperature sensor), standard range -2.46 to 21.48°C (max on high range 36.04°C), accuracy 0.15°C, resolution 0.1 per cent of range, 63 per cent response time 12sec.

  6. Inductive cell conductivity sensor (optional), range 0 to 70mmho/cm standard resolution 0.1 per cent of range.

  7. Bourdon tube pressure sensor (optional) driving a potentiometer - range 0 to 100, 200, 500, 1000 or (RCM4 to 3000psi), (RCM5 to 5000, or 8000psi), lowest calibrated pressure 14.24psi, accuracy 1 per cent of range, resolution 0.1 per cent of range.

  8. Self balancing potentiometer which converts the output from each sensor into a 10 bit binary number for storage on magnetic tape.

  9. Associated electronics.

Sample duration equals nominal interval between data cycles pre-chosen as 0.5, 1, 2, 5, 10, 15, 20, 30, 60 or 180 minutes. Sample recording order: meter reference number, temperature, (conductivity, pressure if installed), current direction, speed.

Manufacturer's calibration formulae:

Meters (manufactured prior to October 1974) with analogue measurement of speed, i.e. the Savonius rotor drives a potentiometer via a magnetically coupled follower and gearbox (6000 : 1 gear ratio):

speed = 1.5 + 246 * (M/T) cm/s (1)

meters with digital measurement of speed i.e. utilizing an electronic reed switch to count the total number of rotor revolutions during the sampling interval:

speed = 1.5 + 42 * B * (M/T) cm/s (2)

all meters:
direction = 1.5 + 0.349N ° magnetic (3)

where
B is the number of rotor revolutions per count, M (bits) binary is the count over the sampling interval T (sec) and N (bits) binary is the direction reading.

Note:
Data collecting laboratories may calibrate their own meters and so not use the manufacturer's calibration equations.

BODC Current Meter Screening

BODC screen both the series header qualifying information and the parameter values in the data cycles themselves.

Header information is inspected for:

Documents are written by BODC highlighting irregularities which cannot be resolved.

Data cycles are inspected using time series plots of all parameters. Currents are additionally inspected using vector scatter plots and time series plots of North and East velocity components. These presentations undergo intrinsic and extrinsic screening to detect infeasible values within the data cycles themselves and inconsistencies as seen when comparing characteristics of adjacent data sets displaced with respect to depth, position or time. Values suspected of being of non- oceanographic origin may be tagged with the BODC flag denoting suspect value.

The following types of irregularity, each relying on visual detection in the time series plot, are amongst those which may be flagged as suspect:

If a large percentage of the data is affected by irregularities, deemed abnormal, then instead of flagging the individual suspect values, a caution may be documented. Likewise documents will highlight irregularities seen in the current vector scatter plots such as incongruous centre holes, evidence of mooring 'knock-down', abnormal asymmetry in tidally dominated records or gaps as when a range of speeds or directions go unregistered due to meter malfunction.

The term 'knock-down' refers to the situation when the 'drag' exerted on a mooring at high current speeds may cause instruments to tilt beyond the angle at which they are intended to operate. At this point the efficiency of the current sensors to accurately record the flow is reduced.

Inconsistencies between the characteristics of the data set and those of its neighbours are sought, and where necessary, documented. This covers inconsistencies in the following:

This intrinsic and extrinsic screening of the parameter values seeks to confirm the qualifying information and the source laboratory's comments on the series. In screening and collating information, every care is taken to ensure that errors of BODC making are not introduced.

Data Processing Notes

The data were low-pass filtered, the transmittance of the filter is close to 1 for 0 to 12 cycles per day and close to 0 at 24 cycles per day. The data were then thinned by 3 to give nominally half-hourly values.

Mooring and Data Processing Information

Mooring Details

The meters were deployed on an I-shaped mooring, with an anchor on the sea floor leading by means of a wire rope to the release gear and command pinger, leading to the in-line current meters, a pinger and finally, the subsurface buoy. On occasion a sea floor pressure recorder was incorporated in the mooring system.

Data Processing

The data were translated from tape to cards and obviously incorrect values (i.e. zeros) were replaced by interpolation. Dead spaces between 1024 and 0 on the speed series were linearly interpolated. The data were then copied to disk, calibrated to m/sec and true direction and resolved to u(north component) and v(east component).


Project Information


No Project Information held for the Series

Data Activity or Cruise Information

Data Activity

Start Date (yyyy-mm-dd) 1971-08-13
End Date (yyyy-mm-dd) 1971-09-12
Organization Undertaking ActivityInstitute of Coastal Oceanography and Tides (now National Oceanography Centre, Liverpool)
Country of OrganizationUnited Kingdom
Originator's Data Activity IdentifierC4
Platform Categorysubsurface mooring

Mooring Information

Mooring held 2 meters.

Other Series linked to this Data Activity - 37774


Fixed Station Information


No Fixed Station Information held for the Series


BODC Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
Blank Unqualified
< Below detection limit
> In excess of quoted value
A Taxonomic flag for affinis (aff.)
B Beginning of CTD Down/Up Cast
C Taxonomic flag for confer (cf.)
D Thermometric depth
E End of CTD Down/Up Cast
G Non-taxonomic biological characteristic uncertainty
H Extrapolated value
I Taxonomic flag for single species (sp.)
K Improbable value - unknown quality control source
L Improbable value - originator's quality control
M Improbable value - BODC quality control
N Null value
O Improbable value - user quality control
P Trace/calm
Q Indeterminate
R Replacement value
S Estimated value
T Interpolated value
U Uncalibrated
W Control value
X Excessive difference

SeaDataNet Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
0 no quality control
1 good value
2 probably good value
3 probably bad value
4 bad value
5 changed value
6 value below detection
7 value in excess
8 interpolated value
9 missing value
A value phenomenon uncertain