Search the data

Metadata Report for BODC Series Reference Number 725732


Metadata Summary

Data Description

Data Category CTD or STD cast
Instrument Type
NameCategories
Sea-Bird SBE 43 Dissolved Oxygen Sensor  dissolved gas sensors
Sea-Bird SBE 25 Sealogger CTD  CTD; water temperature sensor; salinity sensor
WET Labs {Sea-Bird WETLabs} C-Star transmissometer  transmissometers
WET Labs {Sea-Bird WETLabs} ECO FL fluorometer  fluorometers
Instrument Mounting research vessel
Originating Country United Kingdom
Originator Ms Sarah Hughes
Originating Organization Fisheries Research Services Aberdeen Marine Laboratory (now Marine Scotland Aberdeen Marine Laboratory)
Processing Status banked
Online delivery of data Download available - Ocean Data View (ODV) format
Project(s) -
 

Data Identifiers

Originator's Identifier CU12/06/547
BODC Series Reference 725732
 

Time Co-ordinates(UT)

Start Time (yyyy-mm-dd hh:mm) 2006-09-13 13:12
End Time (yyyy-mm-dd hh:mm) -
Nominal Cycle Interval 1.0 decibars
 

Spatial Co-ordinates

Latitude 60.33983 N ( 60° 20.4' N )
Longitude 1.09417 W ( 1° 5.7' W )
Positional Uncertainty Unspecified
Minimum Sensor or Sampling Depth 1.98 m
Maximum Sensor or Sampling Depth 41.6 m
Minimum Sensor or Sampling Height 4.4 m
Maximum Sensor or Sampling Height 44.02 m
Sea Floor Depth 46.0 m
Sea Floor Depth Source -
Sensor or Sampling Distribution Variable common depth - All sensors are grouped effectively at the same depth, but this depth varies significantly during the series
Sensor or Sampling Depth Datum Instantaneous - Depth measured below water line or instantaneous water body surface
Sea Floor Depth Datum Instantaneous - Depth measured below water line or instantaneous water body surface
 

Parameters

BODC CODERankUnitsTitle
ATTNZS011per metreAttenuation (red light wavelength) per unit length of the water body by WET Labs transmissometer and calibration to read zero in clear water
CNDCST011Siemens per metreElectrical conductivity of the water body by CTD
CPHLPM011Milligrams per cubic metreConcentration of chlorophyll-a {chl-a CAS 479-61-8} per unit volume of the water body [particulate >unknown phase] by in-situ chlorophyll fluorometer and manufacturer's calibration applied
CPHLPS011Milligrams per cubic metreConcentration of chlorophyll-a {chl-a CAS 479-61-8} per unit volume of the water body [particulate >unknown phase] by in-situ chlorophyll fluorometer and calibration against sample data
DOXYPR011Micromoles per litreConcentration of oxygen {O2 CAS 7782-44-7} per unit volume of the water body [dissolved plus reactive particulate phase] by in-situ Beckmann probe
LVLTPD011VoltsRaw signal (voltage) of instrument output by PML/Chelsea Instruments 2-pi PAR downwelling light meter
LVLTPU011VoltsRaw signal (voltage) of instrument output by PML/Chelsea Instruments 2-pi PAR upwelling light meter
PRESPR011DecibarsPressure (spatial coordinate) exerted by the water body by profiling pressure sensor and correction to read zero at sea level
PSALST011DimensionlessPractical salinity of the water body by CTD and computation using UNESCO 1983 algorithm
SIGTEQ011Kilograms per cubic metreSigma-theta of the water body by computation from salinity and potential temperature using UNESCO algorithm
TEMPST011Degrees CelsiusTemperature of the water body by CTD or STD

Definition of Rank

  • Rank 1 is a one-dimensional parameter
  • Rank 2 is a two-dimensional parameter
  • Rank 0 is a one-dimensional parameter describing the second dimension of a two-dimensional parameter (e.g. bin depths for moored ADCP data)

Problem Reports

No Problem Report Found in the Database


Data Access Policy

Public domain data

These data have no specific confidentiality restrictions for users. However, users must acknowledge data sources as it is not ethical to publish data without proper attribution. Any publication or other output resulting from usage of the data should include an acknowledgment.

The recommended acknowledgment is

"This study uses data from the data source/organisation/programme, provided by the British Oceanographic Data Centre and funded by the funding body."


Narrative Documents

Sea-Bird Dissolved Oxygen Sensor SBE 43 and SBE 43F

The SBE 43 is a dissolved oxygen sensor designed for marine applications. It incorporates a high-performance Clark polarographic membrane with a pump that continuously plumbs water through it, preventing algal growth and the development of anoxic conditions when the sensor is taking measurements.

Two configurations are available: SBE 43 produces a voltage output and can be incorporated with any Sea-Bird CTD that accepts input from a 0-5 volt auxiliary sensor, while the SBE 43F produces a frequency output and can be integrated with an SBE 52-MP (Moored Profiler CTD) or used for OEM applications. The specifications below are common to both.

Specifications

Housing Plastic or titanium
Membrane

0.5 mil- fast response, typical for profile applications

1 mil- slower response, typical for moored applications

Depth rating

600 m (plastic) or 7000 m (titanium)

10500 m titanium housing available on request

Measurement range 120% of surface saturation
Initial accuracy 2% of saturation
Typical stability 0.5% per 1000 h

Further details can be found in the manufacturer's specification sheet.

Instrument Description

CTD Unit and Auxiliary Sensors

A Sea-Bird Electronics SBE25 Sealogger CTD unit was used. The CTD unit included the following sensors.

Sensor Manufacturer Serial number Calibration date
Pressure Sea-Bird 0583 2006-06-14
Temperature Sea-Bird 4357 2005-11-17
Conductivity Sea-Bird 2864 2005-11-17
Oxygen Sea-Bird 0450 2005-05-03
ECO_FL Fluorometer Wet Labs FLRTD-064 2003-11-08
C-Star Transmissometer Wet Labs CST-704DR 2003-08-25
PAR (downwards facing) Chelsea 46071 2002-07-02
PAR (upwards facing) Chelsea 46072 2002-07-02

Calibrations

Independent water samples were used to calibrate the CTD conductivity and fluorescence data. The following calibration values were supplied to BODC, who applied them to the data as part of the transfer process. By applying the calibrations to the fluoresence values (V) the results are chlorophyll (a) in ug/l.

Parameter Value of m (y=mx+c) Value of c (y=mx+c) Equation
Conductivity 1.006761 -0.264339 C(cal) = 1.006761C(obs) - 0.264339
Fluorescence 0.009593 -1.066200 Chl(a) = 0.009593F(V) -1.066200

Sea-Bird SBE 25 SEALOGGER CTD

The SBE 25 SEALOGGER is a research-quality CTD profiling system used for coastal, estuarine and, can also be a practical option, for deep-water work. It is easily configured in the field for a wide range of auxiliary sensors. The SEALOGGER is self-powered, requires no conductive cable, and is designed for use up to 6800 meters (10,000 psia). It uses the SBE3F temperature and SBE4 conductivity sensors as well as having an external strain gauge pressure sensor. It provides pump-controlled T-C ducted flow, samples at 8 Hz, records internally and provides simultaneous real-time data via its built-in RS-232 interface.

The standard CTD unit comes with a plastic housing (rated to 600 m), although this can be replaced by aluminium housing for depths up to 6800 m.

Specifications

Parameter SBE 25
Temperature

Range: -5 to +35 °C

Accuracy: 0.002 °C

Resolution: 0.0003 °C

Conductivity

Range: 0 to 7 S m-1 (0 to 70 mmho cm-1)

Accuracy: 0.0003 S m-1

Resolution: 0.00004 S m-1

Strain gauge pressure sensor

Range: 0 to 20, 100, 350, 600, 1000, 2000, 3500, 7000 metres (expressed in metres of deployment depth capability)

Accuracy: 0.1% of full scale range

Resolution: 0.015% of full scale range

Options and accessories

Additional sensors can be attached to the CTD, including:

  • Dissolved Oxygen (SBE 43 DO Sensor)
  • pH (SBE 18 pH Sensor or SBE 27 pH/ORP Sensor)
  • fluorescence
  • radiance (PAR)
  • light transmission
  • optical backscatter (turbidity)

The SBE 5T titanium pump can be used in place of SBE 5P pump. Further details can be found in the manufacturer's SBE 25 instrument specification.

WETLabs ECO-FL Fluorometer

The Environmental Characterization Optics series of single channel fluorometers are designed to measure concentrations of natural and synthetic substances in water, and are therefore useful for biological monitoring and dye trace studies. Selected excitation and emission filters allow detection of the following substances: chlorophyll-a, coloured dissolved organic matter (CDOM), uranine (fluorescein), rhodamine, phycoerythrin and phycocyanin.

The ECO-FL can operate continuously or periodically and has two different types of connectors to output the data (analogue and RS-232 serial output). The potted optics block results in long term stability of the instrument and the optional anti-biofouling technology delivers truly long term field measurements.

In addition to the standard model, five variants are available, and the differences between these and the basic ECO-FL are listed below:

  • FL(RT): similar to the FL but operates continuously when power is supplied
  • FL(RT)D: similar model to the (RT) but has a depth rating of 6000 m
  • FLB: includes internal batteries for autonomous operation and periodic sampling
  • FLS: similar to FLB but has an integrated anti-fouling bio-wiper
  • FLSB: similar to the FLS, but includes internal batteries for autonomous operation

Specifications

Temperature range 0 to 30°C
Depth rating

600 m (standard)

6000 m (deep)

Linearity 99 % R2
Chlorophyll-a
Wavelength (excitation/emission) 470/695 nm
Sensitivity 0.01 µg L-1
Typical range 0.01 to 125 µg L-1
CDOM
Wavelength (excitation/emission) 370/460 nm
Sensitivity 0.01 ppb
Typical range 0.09 to 500 ppb
Uranine
Wavelength (excitation/emission) 470/530 nm
Sensitivity 0.07 ppb
Typical range 0.12 to 230 ppb
Rhodamine
Wavelength (excitation/emission) 540/570 nm
Sensitivity 0.01 ppb
Typical range 0.01 to 230 ppb
Phycoerythrin
Wavelength (excitation/emission) 540/570 nm
Sensitivity 0.01 ppb
Typical range 0.01 to 230 ppb
Phycocyanin
Wavelength (excitation/emission) 630/680 nm
Sensitivity 0.15 ppt
Typical range 0.15 to 400 ppt

Further details can be found in the manufacturer's specification sheet.

WETLabs C-Star transmissometer

This instrument is designed to measure beam transmittance by submersion or with an optional flow tube for pumped applications. It can be used in profiles, moorings or as part of an underway system.

Two models are available, a 25 cm pathlength, which can be built in aluminum or co-polymer, and a 10 cm pathlength with a plastic housing. Both have an analog output, but a digital model is also available.

This instrument has been updated to provide a high resolution RS232 data output, while maintaining the same design and characteristics.

Specifications

Pathlength 10 or 25 cm
Wavelength 370, 470, 530 or 660 nm
Bandwidth

~ 20 nm for wavelengths of 470, 530 and 660 nm

~ 10 to 12 nm for a wavelength of 370 nm

Temperature error 0.02 % full scale °C-1
Temperature range 0 to 30°C
Rated depth

600 m (plastic housing)

6000 m (aluminum housing)

Further details are available in the manufacturer's specification sheet or user guide.

BODC Processing

Data were received by BODC in one ASCII format file that was subsequently split into seven separate files, one for each CTD profile. The series were reformatted to the internal QXF format using BODC transfer function 340. The following table details the mapping of variables to BODC parameter codes.

Original parameter name Original Units Description BODC Parameter Code BODC Units Comments
Pressure Decibars Pressure exerted by the water column PRESPR01 Decibars  
Temperature °C Temperature of the water column TEMPST01 °C  
Conductivity mS cm-1 Electrical conductivity of the water column CNDCST01 S m-1 Conversion by transfer (mS cm-1 x 0.1)
Salinity Dimensionless Practical salinity of the water column by CTD and computation using UNESCO 1983 algorithm PSALST01 Dimensionless  
Fluorescence µg l-1 In-situ fluorescence with manufacturer's calibrations CPHLPM01 mg m-3  
Fluorescence µg l-1 In-situ fluorescence with calibration against sample data CPHLPS01 mg m-3  
Beam attenuation m-1 Attenuance of the water column ATTNZS01 m-1  
Downwelling PAR Volts Instrument output (voltage) by PML/Chelsea Instruments 2-pi PAR downwelling light meter LVLTPD01 Volts  
Upwelling PAR Volts Instrument output (voltage) by PML/Chelsea Instruments 2-pi PAR upwelling light meter LVLTPU01 Volts  
Oxygen ml l-1 Dissolved oxygen DOXYPR01 µmol l-1 Conversion by transfer (ml l-1 x 44.6)

Following transfer to QXF, the data were screened using BODC's in-house visualisation software, EDSERPLO. Any data considered as suspect were flagged 'M'. Flags from the originator marking suspect data were retained during transfer and flagged 'L'.

Originator's Data Processing

The raw CTD data files were processed through the SeaBird Electronics SeaSoft data processing software following standard procedures. The originators used in-house interactive visual display editing software to edit out individual spikes in the primary temperature and conductivity channels. An ASCII file was generated for each CTD cast and all files from a cruise were concatenated into one ASCII file which was submitted to BODC.


Project Information


No Project Information held for the Series

Data Activity or Cruise Information

Cruise

Cruise Name 1206C Part 1
Departure Date 2006-08-28
Arrival Date 2006-09-06
Principal Scientist(s)Matt Gubbins (Fisheries Research Services Aberdeen Marine Laboratory)
Ship FRV Clupea

Complete Cruise Metadata Report is available here


Fixed Station Information


No Fixed Station Information held for the Series


BODC Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
Blank Unqualified
< Below detection limit
> In excess of quoted value
A Taxonomic flag for affinis (aff.)
B Beginning of CTD Down/Up Cast
C Taxonomic flag for confer (cf.)
D Thermometric depth
E End of CTD Down/Up Cast
G Non-taxonomic biological characteristic uncertainty
H Extrapolated value
I Taxonomic flag for single species (sp.)
K Improbable value - unknown quality control source
L Improbable value - originator's quality control
M Improbable value - BODC quality control
N Null value
O Improbable value - user quality control
P Trace/calm
Q Indeterminate
R Replacement value
S Estimated value
T Interpolated value
U Uncalibrated
W Control value
X Excessive difference

SeaDataNet Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
0 no quality control
1 good value
2 probably good value
3 probably bad value
4 bad value
5 changed value
6 value below detection
7 value in excess
8 interpolated value
9 missing value
A value phenomenon uncertain
B nominal value
Q value below limit of quantification