Search the data

Metadata Report for BODC Series Reference Number 823161


Metadata Summary

Data Description

Data Category CTD or STD cast
Instrument Type
NameCategories
Neil Brown MK3 CTD  CTD; water temperature sensor; salinity sensor; dissolved gas sensors
SeaTech transmissometer  transmissometers
Chelsea Technologies Group Aquatracka fluorometer  fluorometers
Chelsea Technologies Group 2-pi PAR irradiance sensor  radiometers
Instrument Mounting research vessel
Originating Country United Kingdom
Originator Prof Nick Owens
Originating Organization Plymouth Marine Laboratory
Processing Status banked
Online delivery of data Download available - Ocean Data View (ODV) format
Project(s) North Sea Project 1987-1992
NSP Blooms/Chemistry Process Study
 

Data Identifiers

Originator's Identifier 2973
BODC Series Reference 823161
 

Time Co-ordinates(UT)

Start Time (yyyy-mm-dd hh:mm) 1990-05-02 07:53
End Time (yyyy-mm-dd hh:mm) -
Nominal Cycle Interval 1.0 decibars
 

Spatial Co-ordinates

Latitude 53.72783 N ( 53° 43.7' N )
Longitude 5.61483 E ( 5° 36.9' E )
Positional Uncertainty 0.05 to 0.1 n.miles
Minimum Sensor or Sampling Depth 0.5 m
Maximum Sensor or Sampling Depth 23.29 m
Minimum Sensor or Sampling Height 3.41 m
Maximum Sensor or Sampling Height 26.2 m
Sea Floor Depth 26.7 m
Sea Floor Depth Source PEVENT
Sensor or Sampling Distribution Variable common depth - All sensors are grouped effectively at the same depth, but this depth varies significantly during the series
Sensor or Sampling Depth Datum Instantaneous - Depth measured below water line or instantaneous water body surface
Sea Floor Depth Datum Instantaneous - Depth measured below water line or instantaneous water body surface
 

Parameters

BODC CODERankUnitsTitle
ATTNZR011per metreAttenuation (red light wavelength) per unit length of the water body by transmissometer
CPHLPR011Milligrams per cubic metreConcentration of chlorophyll-a {chl-a CAS 479-61-8} per unit volume of the water body [particulate >unknown phase] by in-situ chlorophyll fluorometer
IRRDPP011MicroEinsteins per square metre per secondDownwelling 2-pi scalar irradiance as photons of electromagnetic radiation (PAR wavelengths) in the water body by 2-pi scalar radiometer
POTMCV011Degrees CelsiusPotential temperature of the water body by computation using UNESCO 1983 algorithm
PRESPR011DecibarsPressure (spatial coordinate) exerted by the water body by profiling pressure sensor and correction to read zero at sea level
PSALST011DimensionlessPractical salinity of the water body by CTD and computation using UNESCO 1983 algorithm
SIGTPR011Kilograms per cubic metreSigma-theta of the water body by CTD and computation from salinity and potential temperature using UNESCO algorithm
TEMPST011Degrees CelsiusTemperature of the water body by CTD or STD
TSEDTR011Milligrams per litreConcentration of suspended particulate material {SPM} per unit volume of the water body [particulate >unknown phase] by in-situ optical attenuance measurement and calibration against sample data

Definition of Rank

  • Rank 1 is a one-dimensional parameter
  • Rank 2 is a two-dimensional parameter
  • Rank 0 is a one-dimensional parameter describing the second dimension of a two-dimensional parameter (e.g. bin depths for moored ADCP data)

Problem Reports

Due to a data processing error the accuracy of the temperature and salinity data has been reduced by an order of magnitude. The data should not be used for any purpose requiring temperature or salinity accuracy better than 0.2.


Data Access Policy

Open Data

These data have no specific confidentiality restrictions for users. However, users must acknowledge data sources as it is not ethical to publish data without proper attribution. Any publication or other output resulting from usage of the data should include an acknowledgment.

If the Information Provider does not provide a specific attribution statement, or if you are using Information from several Information Providers and multiple attributions are not practical in your product or application, you may consider using the following:

"Contains public sector information licensed under the Open Government Licence v1.0."


Narrative Documents

Neil Brown MK3 CTD

The Neil Brown MK3 conductivity-temperature-depth (CTD) profiler consists of an integral unit containing pressure, temperature and conductivity sensors with an optional dissolved oxygen sensor in a pressure-hardened casing. The most widely used variant in the 1980s and 1990s was the MK3B. An upgrade to this, the MK3C, was developed to meet the requirements of the WOCE project.

The MK3C includes a low hysteresis, titanium strain gauge pressure transducer. The transducer temperature is measured separately, allowing correction for the effects of temperature on pressure measurements. The MK3C conductivity cell features a free flow, internal field design that eliminates ducted pumping and is not affected by external metallic objects such as guard cages and external sensors.

Additional optional sensors include pH and a pressure-temperature fluorometer. The instrument is no longer in production, but is supported (repair and calibration) by General Oceanics.

Specifications

These specification apply to the MK3C version.

Pressure Temperature Conductivity
Range

6500 m

3200 m (optional)

-3 to 32°C 1 to 6.5 S cm-1
Accuracy

0.0015% FS

0.03% FS < 1 msec

0.0005°C

0.003°C < 30 msec

0.0001 S cm-1

0.0003 S cm-1 < 30 msec

Further details can be found in the specification sheet.

Aquatracka fluorometer

The Chelsea Instruments Aquatracka is a logarithmic response fluorometer. It uses a pulsed (5.5 Hz) xenon light source discharging between 320 and 800 nm through a blue filter with a peak transmission of 420 nm and a bandwidth at half maximum of 100 nm. A red filter with sharp cut off, 10% transmission at 664 nm and 678 nm, is used to pass chlorophyll-a fluorescence to the sample photodiode.

The instrument may be deployed either in a through-flow tank, on a CTD frame or moored with a data logging package.

Further details can be found in the manufacturer's specification sheet.

Chelsea Technologies Photosynthetically Active Radiation (PAR) Irradiance Sensor

This sensor was originally designed to assist the study of marine photosynthesis. With the use of logarithmic amplication, the sensor covers a range of 6 orders of magnitude, which avoids setting up the sensor range for the expected signal level for different ambient conditions.

The sensor consists of a hollow PTFE 2-pi collector supported by a clear acetal dome diverting light to a filter and photodiode from which a cosine response is obtained. The sensor can be used in moorings, profiling or deployed in towed vehicles and can measure both upwelling and downwelling light.

Specifications

Operation depth 1000 m
Range 2000 to 0.002 µE m-2 s-1
Angular Detection Range ± 130° from normal incidence
Relative Spectral Sensitivity

flat to ± 3% from 450 to 700 nm

down 8% of 400 nm and 36% at 350 nm

Further details can be found in the manufacturer's specification sheet.

SeaTech Transmissometer

Introduction

The transmissometer is designed to accurately measure the the amount of light transmitted by a modulated Light Emitting Diode (LED) through a fixed-length in-situ water column to a synchronous detector.

Specifications

  • Water path length: 5 cm (for use in turbid waters) to 1 m (for use in clear ocean waters).
  • Beam diameter: 15 mm
  • Transmitted beam collimation: <3 milliradians
  • Receiver acceptance angle (in water): <18 milliradians
  • Light source wavelength: usually (but not exclusively) 660 nm (red light)

Notes

The instrument can be interfaced to Aanderaa RCM7 current meters. This is achieved by fitting the transmissometer in a slot cut into a customized RCM4-type vane.

A red LED (660 nm) is used for general applications looking at water column sediment load. However, green or blue LEDs can be fitted for specilised optics applications. The light source used is identified by the BODC parameter code.

Further details can be found in the manufacturer's Manual.

RRS Challenger 64 CTD Data Documentation

Instrumentation

The CTD unit was a Neil Brown Mk. 3 incorporating a pressure sensor, conductivity cell, platinum resistance thermometer and a Beckmann dissolved oxygen sensor. This was mounted vertically in the centre of a protective cage approximately 1.5m square.

Attached to bars of the frame were an Aquatracka logarithmic response fluorometer and a Seatech red light (661 nm) transmissometer with a 25 cm path length.

Above the frame was a General Oceanics rosette sampler fitted with 12, 10 litre water bottles. These comprised a mixture of Niskin, general purpose Go-Flo and ultra-clean teflon lined Go-Flo bottles as dictated by sampling requirements. The base of the bottles were 0.75m above and the tops 1.55m above the pressure head. One bottle was fitted with a holder for twin reversing thermometers mounted 1.38m above the CTD temperature sensor.

Above the rosette, 1.75m above the pressure head, was a PML 2-pi PAR (photosynthetically active radiation) sensor pointing upwards to measure downwelling irradiance. For the first few casts (2924-2930) a second PAR meter was fitted pointing downwards 0.2m below the pressure head to measure upwelling irradiance.

No account has been taken of rig geometry in the compilation of the CTD data set. However, all water bottle sampling depths have been corrected for rig geometry and represent the true position of the midpoint of the water bottle in the water column.

Operational procedure and data logging

On each cast the CTD was lowered to a depth of approximately 5 metres and held until the oxygen reading stabilised. It was then raised to the surface and lowered continuously at 0.5 to 1 m/s to as close as possible to the sea floor. The upcast was done in stages between the bottle firing depths.

Data were logged by the Research Vessel Services ABC data logging system. The deck unit outputs were sampled at 32 Hz by a microprocessor interface (the Level A) which passed time stamped averaged cycles at 1 Hz to a Sun workstation (the Level C) via a buffering system (the Level B).

Data processing

The raw data comprised ADC counts. These were converted into engineering units (Volts for PAR meters, fluorometer and transmissometer: ml/l for oxygen: mmho/cm for conductivity: °C for temperature) by the application of laboratory determined calibrations and salinity was computed using the algorithm in Fofonoff and Millard (1983). The data were submitted to BODC in this form.

Within BODC the data were reformatted on an IBM main-frame. At this stage transmissometer air readings recorded during the cruise were used to correct the transmissometer voltage to the manufacturer's specified voltage by ratio. The voltages were then converted to percentage transmittance (multiplied by 20.0) and dissolved oxygen converted to µM (multiplied by 44.66).

Next the data were loaded onto a Silicon Graphics workstation. A sophisticated interactive screening program was used to delimit the downcast, mark the depth range of water bottle firings and flag any spikes on all of the data channels.

The data were returned to the IBM and the downcasts loaded into a database under the Oracle relational database management system. At this stage percentage transmittance was converted to attenuance to eliminate the influence of instrument path length using the equation:

Attenuance = -4.0 * loge (% trans/100)

Calibration sample data were merged into the database and files of sample value against CTD reading at the bottle depth were prepared for the Principal Investigators to determine the calibrations. Due allowance was made for rig geometry. Note that CTD downcast values were generally used although the bottles were fired on the upcast. The validity of an assumed static water column for the duration of the cast was checked on the graphics workstation and upcast values substituted if necessary.

Sigma-T values were calculated using the algorithm presented in Fofonoff and Millard (1983).

Calibrations

For each cast the mean pressure reading logged whilst the instrument was in air was determined. The average of these, determined as -0.9 db, was added to each pressure value.

Temperature and salinity were affected by a data processing error and no resources were available to rework the data from the raw state. Rather than reject the data, the effects of the error have been minimised by using a modified calibration procedure.

The bottle firing reports include the temperature and salinity logged by a microcomputer free from the processing error. These were calibrated against reversing thermometer and water bottle data to provide a secondary standard with several readings per cast. The best mean salinity and temperature offsets for small groups of casts were determined to be:

Start End Temperature Salinity
2924 2924 -0.002 -0.163
2925 2929 -0.116 0.142
2930 2951 -0.352 0.376
2952 2955 -0.437 0.437
2956 2973 -0.389 0.399

The offset at the top and bottom of each cast was checked and if the drift within cast were excessive the affected portions of the cast were flagged suspect. The net result is that the accuracy of the temperature and salinity measurements is reduced by an order of magnitude.

Extracted chlorophyll values were log transformed and regressed against fluorometer voltages to give the calibration equation:

Chlorophyll (mg/m3) = exp (1.850*V - 3.470) (n=91; r2=73.5%)

There were no dissolved oxygen calibration samples taken on this cruise. All dissolved oxygen values have been flagged as suspect as a result.

Attenuance was regressed against total suspended matter determinations to derive the equation below to allow attenuance to be expressed in terms of suspended matter.

Total suspended matter (mg/l) = (Attenuance-0.391)/0.239 (n=88; r2=69.4%)

A problem was encountered with the PAR meters. These were tested to a pressure of 300 db. Unfortunately, on cast 2930 the meters were left on the rig on a deep cast and they imploded. The downwelling sensor was replaced by a spare unit but no spare was available to replace the upwelling sensor.

The following laboratory calibrations were applied:

Casts 2924 to 2930

Upwelling: PAR (µE/m2/s) = exp (-5.122*V + 6.5739) * 0.0375
Downwelling: PAR (µE/m2/s) = exp (-5.139*V + 6.5506) * 0.0375

Casts 2931 to 2973

Downwelling: PAR (µE/m2/s) = exp (-5.247*V + 6.7806) * 0.0375

Warnings

Due to a data processing error the accuracy of the temperature and salinity data has been reduced by an order of magnitude. The data should not be used for any purpose requiring temperature or salinity accuracy better than 0.2.

No dissolved oxygen data are available as no calibrations were done.

References

Fofonoff, N.P and Millard, R.C. Jr. (1983). Algorithms for the computation of fundamental properties of sea water.


Project Information

North Sea Project

The North Sea Project (NSP) was the first Marine Sciences Community Research project of the Natural Environment Research Council (NERC). It evolved from a NERC review of shelf sea research, which identified the need for a concerted multidisciplinary study of circulation, transport and production.

The ultimate aim of the NERC North Sea Project was the development of a suite of prognostic water quality models to aid management of the North Sea. To progress towards water quality models, three intermediate objectives were pursued in parallel:

  • Production of a 3-D transport model for any conservative passive constituent, incorporating improved representations of the necessary physics - hydrodynamics and dispersion;
  • Identifying and quantifying non-conservative processes - sources and sinks determining the cycling and fate of individual constituents;
  • Defining a complete seasonal cycle as a database for all the observational studies needed to formulate, drive and test models.

Proudman Oceanographic Laboratory hosted the project, which involved over 200 scientists and support staff from NERC and other Government funded laboratories, as well as seven universities and polytechnics.

The project ran from 1987 to 1992, with marine field data collection between April 1988 and October 1989. One shakedown (CH28) and fifteen survey cruises (Table 1), each lasting 12 days and following the same track, were repeated monthly. The track selected covered the summer-stratified waters of the north and the homogeneous waters in the Southern Bight in about equal lengths together with their separating frontal band from Flamborough head to Dogger Bank, the Friesian Islands and the German Bight. Mooring stations were maintained at six sites for the duration of the project.

Table 1: Details of NSP Survey Cruises on RRS Challenger
Cruise No. Date
CH28 29/04/88 - 15/05/88
CH33 04/08/88 - 16/08/88
CH35 03/09/88 - 15/09/88
CH37 02/10/88 - 14/10/88
CH39 01/11/88 - 13/11/88
CH41 01/12/88 - 13/12/88
CH43 30/12/88 - 12/01/89
CH45 28/01/89 - 10/02/89
CH47 27/02/89 - 12/03/89
CH49 29/03/89 - 10/04/89
CH51 27/04/89 - 09/05/89
CH53 26/05/89 - 07/06/89
CH55 24/06/89 - 07/07/89
CH57 24/07/89 - 06/08/89
CH59 23/08/89 - 04/09/89
CH61 21/09/89 - 03/10/89

Alternating with the survey cruises were process study cruises (Table 2), which investigated some particular aspect of the science of the North Sea. These included fronts (nearshore, circulation and mixing), sandwaves and sandbanks, plumes (Humber, Wash, Thames and Rhine), resuspension, air-sea exchange, primary productivity and blooms/chemistry.

Table 2: Details of NSP Process cruises on RRS Challenger
Cruise No. Date Process
CH34 18/08/88 - 01/09/88 Fronts - nearshore
CH36 16/09/88 - 30/09/88 Fronts - mixing
CH56 08/07/89 - 22/07/89 Fronts - circulation
CH58 07/08/89 - 21/08/89 Fronts - mixing
CH38 24/10/88 - 31/10/88 Sandwaves
CH40 15/11/88 - 29/11/88 Sandbanks
CH42 15/12/88 - 29/12/88 Plumes/Sandbanks
CH46 12/02/89 - 26/02/89 Plumes/Sandwaves
CH44 13/01/89 - 27/01/89 Resuspension
CH52 11/05/89 - 24/05/89 Resuspension
CH60 06/09/89 - 19/09/89 Resuspension
CH48 13/03/89 - 27/03/89 Air/sea exchanges
CH62 05/10/89 - 19/10/89 Air/sea exchanges
CH50 12/04/89 - 25/04/89 Blooms/chemistry
CH54 09/06/89 - 22/06/89 Production

In addition to the main data collection period, a series of cruises took place between October 1989 and October 1990 that followed up work done on previous cruises (Table 3). Process studies relating to blooms, plumes (Humber, Wash and Rhine), sandwaves and the flux of contaminants through the Dover Strait were carried out as well as two `survey' cruises.

Table 3: Details of NSP `Follow up' cruises on RRS Challenger
Cruise No. Date Process
CH62A 23/10/89 - 03/11/89 Blooms
CH64 03/04/90 - 03/05/90 Blooms
CH65 06/05/90 - 17/05/90 Humber plume
CH66A 20/05/90 - 31/05/90 Survey
CH66B 03/06/90 - 18/06/90 Contaminants through Dover Strait
CH69 26/07/90 - 07/08/90 Resuspension/Plumes
CH72A 20/09/90 - 02/10/90 Survey
CH72B 04/10/90 - 06/10/90 Sandwaves/STABLE
CH72C 06/10/90 - 19/10/90 Rhine plume

The data collected during the observational phase of the North Sea Project comprised one of the most detailed sets of observations ever undertaken in any shallow shelf sea at that time.


North Sea Project Blooms/Chemistry Process Study

This study examined the effects of developing phytoplankton blooms on water chemistry. Time series measurements using drogued buoys (primary production, dimethyl sulphide and vertical fluxes) were recorded on a diatom bloom off the North Yorkshire coast and a Phaeocystis bloom in the Southern Bight. The aim was

  • to investigate gross and net primary production during bloom conditions
  • to examine the relationships between primary productivity and biogeochemical cycling of certain trace metals and biogenic traces gases

Data Activity or Cruise Information

Cruise

Cruise Name CH64
Departure Date 1990-04-03
Arrival Date 1990-05-03
Principal Scientist(s)Nicholas J P Owens (Plymouth Marine Laboratory)
Ship RRS Challenger

Complete Cruise Metadata Report is available here


Fixed Station Information


No Fixed Station Information held for the Series


BODC Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
Blank Unqualified
< Below detection limit
> In excess of quoted value
A Taxonomic flag for affinis (aff.)
B Beginning of CTD Down/Up Cast
C Taxonomic flag for confer (cf.)
D Thermometric depth
E End of CTD Down/Up Cast
G Non-taxonomic biological characteristic uncertainty
H Extrapolated value
I Taxonomic flag for single species (sp.)
K Improbable value - unknown quality control source
L Improbable value - originator's quality control
M Improbable value - BODC quality control
N Null value
O Improbable value - user quality control
P Trace/calm
Q Indeterminate
R Replacement value
S Estimated value
T Interpolated value
U Uncalibrated
W Control value
X Excessive difference

SeaDataNet Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
0 no quality control
1 good value
2 probably good value
3 probably bad value
4 bad value
5 changed value
6 value below detection
7 value in excess
8 interpolated value
9 missing value
A value phenomenon uncertain
B nominal value
Q value below limit of quantification