Metadata Report for BODC Series Reference Number 959638
Metadata Summary
Problem Reports
Data Access Policy
Narrative Documents
Project Information
Data Activity or Cruise Information
Fixed Station Information
BODC Quality Flags
SeaDataNet Quality Flags
Metadata Summary
Data Description |
|||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||
Data Identifiers |
|||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||
Time Co-ordinates(UT) |
|||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||
Spatial Co-ordinates | |||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||
Parameters |
|||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||
|
Problem Reports
No Problem Report Found in the Database
Data Quality Report
Salinity accuracy is of the order of 0.01 PSU. The data should not be used for any purpose where the third decimal place of salinity is critical.
Data Access Policy
Open Data
These data have no specific confidentiality restrictions for users. However, users must acknowledge data sources as it is not ethical to publish data without proper attribution. Any publication or other output resulting from usage of the data should include an acknowledgment.
If the Information Provider does not provide a specific attribution statement, or if you are using Information from several Information Providers and multiple attributions are not practical in your product or application, you may consider using the following:
"Contains public sector information licensed under the Open Government Licence v1.0."
Narrative Documents
Neil Brown MK3 CTD
The Neil Brown MK3 conductivity-temperature-depth (CTD) profiler consists of an integral unit containing pressure, temperature and conductivity sensors with an optional dissolved oxygen sensor in a pressure-hardened casing. The most widely used variant in the 1980s and 1990s was the MK3B. An upgrade to this, the MK3C, was developed to meet the requirements of the WOCE project.
The MK3C includes a low hysteresis, titanium strain gauge pressure transducer. The transducer temperature is measured separately, allowing correction for the effects of temperature on pressure measurements. The MK3C conductivity cell features a free flow, internal field design that eliminates ducted pumping and is not affected by external metallic objects such as guard cages and external sensors.
Additional optional sensors include pH and a pressure-temperature fluorometer. The instrument is no longer in production, but is supported (repair and calibration) by General Oceanics.
Specifications
These specification apply to the MK3C version.
Pressure | Temperature | Conductivity | |
Range | 6500 m 3200 m (optional) | -3 to 32°C | 1 to 6.5 S cm-1 |
Accuracy | 0.0015% FS 0.03% FS < 1 msec | 0.0005°C 0.003°C < 30 msec | 0.0001 S cm-1 0.0003 S cm-1 < 30 msec |
Further details can be found in the specification sheet.
SeaTech Transmissometer
Introduction
The transmissometer is designed to accurately measure the the amount of light transmitted by a modulated Light Emitting Diode (LED) through a fixed-length in-situ water column to a synchronous detector.
Specifications
- Water path length: 5 cm (for use in turbid waters) to 1 m (for use in clear ocean waters).
- Beam diameter: 15 mm
- Transmitted beam collimation: <3 milliradians
- Receiver acceptance angle (in water): <18 milliradians
- Light source wavelength: usually (but not exclusively) 660 nm (red light)
Notes
The instrument can be interfaced to Aanderaa RCM7 current meters. This is achieved by fitting the transmissometer in a slot cut into a customized RCM4-type vane.
A red LED (660 nm) is used for general applications looking at water column sediment load. However, green or blue LEDs can be fitted for specilised optics applications. The light source used is identified by the BODC parameter code.
Further details can be found in the manufacturer's Manual.
RRS Discovery 182 CTD Data Documentation
Instrumentation
The CTD profiles were taken with an RVS Neil Brown Systems Mk3B CTD incorporating a pressure sensor, conductivity cell, platinum resistance thermometer and a Beckmann dissolved oxygen sensor. This was mounted vertically in the centre of a protective cage approximately 1.5m square.
Attached to the bars of the frame were a Chelsea Instruments Aquatracka fluorometer, and a SeaTech red light (661nm) transmissometer with a 25cm path length.
Above the frame was a General Oceanics rosette sampler fitted with 12, 10 litre water bottles. Initially, 10-litre Go-Flo bottles were used but problems with leakage (confirmed by measuring the temperature of the water samples) were encountered, even at relatively shallow depths. Consequently, Niskin bottles carried as spares were subsequently used for as much of the sampling work as possible. Where leakage has been reported, the water bottles have been flagged in the database.
The bases of the bottles were 0.75m above the pressure head with their tops 1.55m above it. One of the bottles was fitted with a holder for up to three digital reversing thermometers mounted 1.38m above the CTD temperature sensor. On deep casts, a second bottle was sometimes similarly equipped.
A single PML 2-pi PAR (photosynthetically available radiation) meter was fitted above the bottle rosette facing upwards to measure downwelling irradiance. This was approximately 1.6m above the CTD pressure sensor.
Lowering rates of up to 1.5 m/sec were used, although rates were generally in the range 0.5 - 1 m/sec. Bottle samples and reversing thermometer measurements were acquired on the ascent of each cast.
Data Acquisition
CTD data were sampled at a frequency of 32 Hz. Data reduction was in real time, converting the 32 Hz data to a 1-second time-series (done by the RVS Level A system) which was then passed through an Analogue-Digital Converter and logged as digital counts on the Level C.
On-Board Data Processing
RVS software on the Level C (a Sun workstation) was used to convert the raw counts into engineering units (Volts for PAR, fluorometer and transmissometer: ml/l for oxygen: mmho/cm for conductivity: °C for temperature) and to apply a nominal calibration to the chlorophyll channel and to convert the PAR data into log base 10 W/m2.
Salinity (Practical Salinity Units, as defined by the Practical Salinity Scale, Fofonoff and Millard (1982)) was calculated from conductivity ratios (conductivity / 42.914) and a lagged temperature using the function described in Unesco report 37 (1981).
Data were written onto magnetic tape in GF3 format and submitted to BODC.
Post-Cruise Processing
Reformatting
The data were converted into the BODC internal format to allow the use of in-house software tools, notably the workstation graphics editor. In addition to reformatting, the Transfer Program applied the following modifications to the data:
The nominal chlorophyll channel was converted back into Volts using the equation
Volts = log(nominal chlorophyll+2.798)/1.1764 |
determined from the RVS Level C calibration file.
Dissolved oxygen was converted from ml/l to µM by multiplying the values by 44.66.
The transmissometer voltages were corrected for light source decay by ratio using air readings collected during the cruise (4.816V: dark offset 0.002V) and the air voltage quoted by the manufacturer (4.820V).
Transmissometer voltages were converted to percentage transmission by multiplying them by 20.
The log transform on the PAR data was removed and the values converted to µE/m2/s by multiplying by 3.75 (an empirical factor derived for this type of light meter).
Editing
Reformatted CTD data were transferred onto a high-speed graphics workstation. A number of tasks was performed here, using an in-house graphics editor. Initially, downcasts and upcasts were differentiated and the limits of the downcast were manually flagged.
Secondly, spikes on the downcast data were manually flagged. No data values were edited or deleted; flagging was achieved by modification of the associated quality control character flags.
Finally, the pressure ranges over which bottle samples were being collected, were logged by manual interaction with the software. Usually, the marked reaction of the oxygen sensor to the bottle firing sequence was used to determine this.
These pressure ranges were subsequently used, in conjunction with a geometrical correction for the position of the water bottles with respect to the CTD pressure transducer, to determine the pressure range of data to be averaged for calibration values.
Once screened on the workstation, the CTD downcasts were loaded into a database under the Oracle relational database management system. During the loading process, the transmissometer data were converted to attenuance using the algorithm:
attenuance = -4.0 * ln ( percent transmittance / 100.0) |
Calibration
Calibrations were determined by comparison of sample data against the values logged by the CTD. Initially, these were automatically derived from the downcasts but were manually adjusted using the power of the graphics workstation software if there was any evidence of hysteresis.
All calibrations described here have been applied to the data.
Pressure
The pressure offset was determined by looking at the pressures recorded when the CTD was clearly logging in air (readily apparent from the conductivity channel). A consistent value was observed throughout the cruise thus:
Pcorr = Pobs - 1.27 |
Temperature
The following calibration was determined by the cruise Principal Scientist and supplied to BODC:
Tcorr = Tobs*0.99614 - 0.03615 |
Salinity
Salinity was calibrated against water bottle samples measured on the Guildline 55358 Autolab Salinometer during the cruise. Samples were generally taken from the first bottle fired on each cast which would normally be at the maximum depth sampled. On some deep casts, one or even two additional samples were taken spaced through the water column.
Samples were collected in glass bottles filled to just below the neck and sealed with plastic stoppers. Batches of samples were left for at least 24 hours to reach thermal equilibrium in the constant temperature laboratory containing the salinometer before analysis.
The following corrections were determined:
CTD 11857#2 to 11859#17A Scorr = Sobs + 0.083 |
CTD 11859#19 to 11864#61 Scorr = Sobs + 0.078 |
CTD 11864#62 to 11865#21 Scorr = Sobs + 0.083 |
Oxygen
The dissolved oxygen sensor was calibrated against samples analysed following the Winkler titration procedures outlined in Carpenter (1965) and Williams and Jenkinson (1982). The data were supplied in µM at 25 °C and were converted to µM at in-situ temperature using densities calculated from the calibrated CTD data.
The calibration equation below was detemined, treating the cruise as a single population:
Ocorr = Oobs*0.83 + 43.6 |
Oxygen saturations present in the data file have been computed using the algorithm presented in Benson and Krause (1984).
Chlorophyll
Two fluorometer calibrations, one for each of the fluorometers used on the CTD, were provided by the cruise PSO, based upon fluorometric extracted chlorophyll determinations taken during the cruise. Log chlorophyll was regressed against voltage and downwelling irradiance to give the equations:
CTD 11857#2 to 11863#2 and 11865#7 and 11865#21
chlorophyll (mg/m3) = exp (Volts*1.4649 + PAR*0.001328 - 3.10) |
CTD 11864#1 to 11865#4
chlorophyll (mg/m3) = exp (Volts*2.1107 + PAR*0.00208 - 4.10) |
The PAR term coefficient has been adjusted (multiplied by 3.75) to handle data in µE/m2/s rather than W/m2 as supplied.
Binning
The CTD data have been binned by averaging over 1 db intervals for casts shallower than 100m and 2 db intervals for casts deeper than 100m. The binning algorithm only included data values associated with good flags. If no good data were available for a bin, linear interpolation was used to fill gaps of up to 3 bins. Gaps larger than this were left null.
The result of this algorithm is that data points are either considered good, in which case there is a value, or null, in which case the field is left blank. This removes the need for quality control flags which are often ignored and consequently make the data much easier to handle. The disadvantage is that some information is lost. The full resolution data have been archived by BODC and may be obtained on request.
Quality Control
Checks were performed on the analytical precision of the CTD conductivity cell, which exploited the canonical relationship between potential temperature and salinity observed by Saunders and Manning (1984) and given in Saunders (1986).
For deep water in the N.E. Atlantic, observations of salinity, S at potential temperature, theta (defined in Bryden, 1973) less than 2.6 °C have been documented as revealing a linear theta-S relationship: S = 34.968 + 0.098*theta.
This algorithm was used to compute expected salinities from CTD temperature measurements at depth, which were compared to measured salinities, to give an indication of the internal consistency of CTD measurements:
Cast 11859#24: | Maximum diff:0.0094 PSU observed at 3731 decibars. |
Minimum diff:0.0028 PSU observed at 3058 decibars. |
On the basis of this one, sufficiently deep cast, it would appear that the JGOFS target accuracy for salinity of 0.02 PSU has easily been achieved for this cruise. However, it should be noted that these data should not be used for any purpose for which the third decimal place is critical.
References
BENSON, B.B., KRAUSE, D. Jr. 1984. The concentration and isotopic fractionation of oxygen dissolved in fresh water and sea water in equilibrium with the atmosphere. Limnol. Oceanogr. 29: 620-632.
BRYDEN H. 1973. New polynomials for thermal expansion, adiabatic temperature gradients and potential temperature of sea water. Deep Sea Research 20 : 401-408.
CARPENTER J.H. 1965. The Chesapeake Bay Institute techniques for the Winkler dissolved oxygen method. Limnology and Oceanography 10 : 141-143.
FOFONOFF N.P., MILLARD R.C. 1982. Algorithms for computation of fundamental properties of seawater. UNESCO Technical papers in Marine Science 44.
SAUNDERS P.M., MANNING A. 1984. CTD Data from the Northeast Atlantic Ocean, 22N-33N, 19-24W, July 1983 during RRS Discovery cruises 138,139. IOS Deacon Laboratory technical report 188.
SAUNDERS P.M. 1986. CTD data from the Madeira and Iberian abyssal plains, Charles Darwin cruises 3/85 and 9A/85. IOS Deacon Laboratory technical report 227.
UNESCO 1981. Background papers and supporting data on the Practical Salinity Scale, 1978. Unesco Technical Papers in Marine Science 37 144pp.
WILLIAMS P. J. leB., JENKINSON N.W. 1982. A transportable microprocessor-controlled precise Winkler titration suitable for field station and shipboard use. Limnol. Oceanogr. 27 : 567-585.
Project Information
Biogeochemical Ocean Flux Study (BOFS)
The Biogeochemical Ocean Flux Study (BOFS) was a Community Research Project within the Marine and Atmospheric Sciences Directorate (MASD) of the Natural Environment Research Council. The project provided a major United Kingdom contribution to the international Joint Global Ocean Flux Study (JGOFS). The project ran from April 1987 until March 1992 but was extended through bridging funds until March 1993. The BOFS North Atlantic Data Set was collected during the initial five year period. Fieldwork in the bridging year focused on the Antarctic in late 1992. These data will form part of a subsequent electronic publication of Antarctic data and are not included on this CD-ROM.
The primary aims of the BOFS programme were:
- To improve the understanding of the biogeochemical processes influencing the dynamics of the cycling of the elements in the ocean and related atmospheric exchanges with particular reference to carbon.
- To develop, in collaboration with, other national and international programmes. models capable of rationalising and eventually predicting the chemical and biological consequences of natural and man-induced changes to the atmosphere ocean system.
A Community Research Project brings together scientists from NERC institutes and UK universities to work on a common problem. In this way resources far beyond the scope of individual research groups may be brought to bear on a common problem. The project is coordinated through a host laboratory which has responsibility for financial management, organisation and logistics. The host laboratory for BOFS was the Plymouth Marine Laboratory (PML).
Fieldwork
The BOFS North Atlantic data set was the result of fieldwork carried out on 11 research cruises. Four studies were carried out during three field seasons in 1989, 1990 and 1991; the 1989 North Atlantic Bloom Experiment, the 1990 Lagrangian Experiment, the 1990 BOFS Benthic Study and the 1991 Coccolithphore Study. Measurements taken include:
Physical (e.g. temperature, salinity and optics)
Meteorology and positioning
Chemical (e.g. dissolved oxygen, organic carbon and nitrogen)
Biological (e.g. biomass, pigments and bacteria production)
Geological (sediment traps)
The Sterna 1992 project (the Southern Ocean component of BOFS) aimed to measure the size and variability of carbon and nitrogen fluxes during early summer in the Southern Ocean, with particular emphasis on rates and processes in the marginal ice zone. Fieldwork was carried out between October and December 1992 in the Southern Ocean area, approximately 55°S to 70°S, 60°W to 85°W. A wide range of physical, chemical and biological parameters were measured.
Data Management
Data management services to BOFS were provided by the British Oceanographic Data Centre, funded by the UK Natural Environment Research Council.
Joint Global Ocean Flux Study (JGOFS)
JGOFS was an international and multi-disciplinary programme, which ran from February 1987 to December 2003, with participants from more than 20 nations. JGOFS was launched at a planning meeting in Paris under the auspices of the Scientific Committee of Oceanic Research (SCOR), a committee of the International Council for Science (ICSU) and later became one of the first core projects of the International Geosphere-Biosphere Programme (IGBP) in 1989.
The primary aims of the JGOFS programme were:
- To determine and understand on a global scale the processes controlling the time-varying fluxes of carbon and associated biogenic elements in the ocean, and to evaluate the related exchanges with the atmosphere, sea floor and continental boundaries.
- To develop a capacity to predict on a global scale the response to anthropogenic perturbations, in particular those related to climate change.
JGOFS consisted of fieldwork, synthesis and modelling phases. Further information about JGOFS may be found at the international Joint Global Ocean Flux Study web site.
JGOFS fieldwork
Date | Fieldwork |
---|---|
1988 - 1990 | Long-term time series stations established near Bermuda, Hawaii and in the Ligurian Sea |
1989 - 1991 | North Atlantic Bloom Experiment (NABE) |
1991 - 1994 | Equatorial Pacific Process Study |
1992 - 1998 | Southern Ocean Process Study |
1994 - 1995 | Indian Ocean (Arabian Sea) Process Study |
1998 | North Pacific Process Study |
Synthesis and modelling phase
From 1998, as the fieldwork for most process studies were being completed, JGOFS focused on:
- Integrating regional synthesis and modelling activities
- Maintaining links to other ocean observing and global change programmes
- Developing a global synthesis and modelling phase
Data availability
The field data collected during JGOFS has been published on two DVDs. These are available via the World Data Center for Oceanography, Silver Spring and are entitled:
- JGOFS International Collection, Volume 1: Discrete Datasets (1989-2000) DVD
- JGOFS Arabian Sea Process Study, CTD, XBT and SeaSoar Data from 1990-1997
Data sets making up the UK contribution to JGOFS, for which BODC provided data management support, are also available directly from BODC.
Data Activity or Cruise Information
Cruise
Cruise Name | D182 |
Departure Date | 1989-05-08 |
Arrival Date | 1989-06-08 |
Principal Scientist(s) | Michael J R Fasham (Institute of Oceanographic Sciences Deacon Laboratory) |
Ship | RRS Discovery |
Complete Cruise Metadata Report is available here
Fixed Station Information
No Fixed Station Information held for the Series
BODC Quality Control Flags
The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:
Flag | Description |
---|---|
Blank | Unqualified |
< | Below detection limit |
> | In excess of quoted value |
A | Taxonomic flag for affinis (aff.) |
B | Beginning of CTD Down/Up Cast |
C | Taxonomic flag for confer (cf.) |
D | Thermometric depth |
E | End of CTD Down/Up Cast |
G | Non-taxonomic biological characteristic uncertainty |
H | Extrapolated value |
I | Taxonomic flag for single species (sp.) |
K | Improbable value - unknown quality control source |
L | Improbable value - originator's quality control |
M | Improbable value - BODC quality control |
N | Null value |
O | Improbable value - user quality control |
P | Trace/calm |
Q | Indeterminate |
R | Replacement value |
S | Estimated value |
T | Interpolated value |
U | Uncalibrated |
W | Control value |
X | Excessive difference |
SeaDataNet Quality Control Flags
The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:
Flag | Description |
---|---|
0 | no quality control |
1 | good value |
2 | probably good value |
3 | probably bad value |
4 | bad value |
5 | changed value |
6 | value below detection |
7 | value in excess |
8 | interpolated value |
9 | missing value |
A | value phenomenon uncertain |
B | nominal value |
Q | value below limit of quantification |