Metadata Report for BODC Series Reference Number 1360422
Metadata Summary
Problem Reports
Data Access Policy
Narrative Documents
Project Information
Data Activity or Cruise Information
Fixed Station Information
BODC Quality Flags
SeaDataNet Quality Flags
Metadata Summary
Data Description |
|||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||
Data Identifiers |
|||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||
Time Co-ordinates(UT) |
|||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||
Spatial Co-ordinates | |||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||
Parameters |
|||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||
|
Problem Reports
No Problem Report Found in the Database
Data Access Policy
Open Data
These data have no specific confidentiality restrictions for users. However, users must acknowledge data sources as it is not ethical to publish data without proper attribution. Any publication or other output resulting from usage of the data should include an acknowledgment.
If the Information Provider does not provide a specific attribution statement, or if you are using Information from several Information Providers and multiple attributions are not practical in your product or application, you may consider using the following:
"Contains public sector information licensed under the Open Government Licence v1.0."
Narrative Documents
SPX Bran+Luebbe Autoanalyser 3
The instrument uses continuous flow analysis (CFA) with a continuous stream of material divided by air bubbles into discrete segments in which chemical reactions occur. The continuous stream of liquid samples and reagents are combined and transported in tubing and mixing coils. The tubing passes the samples from one apparatus to the other with each apparatus performing different functions, such as distillation, dialysis, extraction, ion exchange, heating, incubation, and subsequent recording of a signal.
An essential principle of the system is the introduction of air bubbles. The air bubbles segment each sample into discrete packets and act as a barrier between packets to prevent cross contamination as they travel down the length of the tubing. The air bubbles also assist mixing by creating turbulent flow (bolus flow), and provide operators with a quick and easy check of the flow characteristics of the liquid.
Samples and standards are treated in an exactly identical manner as they travel the length of the tubing, eliminating the necessity of a steady state signal, however, since the presence of bubbles create an almost square wave profile, bringing the system to steady state does not significantly decrease throughput and is desirable in that steady state signals (chemical equilibrium) are more accurate and reproducible.
The autoanalyzer can consist of different modules including a sampler, pump, mixing coils, optional sample treatments (dialysis, distillation, heating, etc), a detector, and data generator. Most continuous flow analyzers depend on color reactions using a flow through colorimeter, however other methods have been developed that use ISE, flame photometry, ICAP, fluorometry, and so forth.
More details can be found in the manufacturer's introduction to autoanalysers andinstrument description.
Clean pumped sea water supply
The system comprises a precision echosounder (PES) fish attached to a clean, reinforced tube (typically composed of braided polyvinyl chloride (PVC)). The fish is designed to be towed alongside a moving ship at a depth of one to three metres and water is drawn through the system by a clean pump. The tube usually leads to a clean laboratory on board the vessel, inside which samples are drawn for analysis. The system is typically used for continuous, underway, clean sampling (e.g., trace metal studies) of near surface waters.
Inorganic nutrients concentrations (micromolar sensitivity nitrate, nitrite, phosphate, silicate and ammonium) for UK SOLAS cruise Discovery D338 (ICON)
Originator's Data Acquisition and Analysis
Water samples were collected from 60 of the CTD deployments. The 20-litre CTD bottles were subsampled into acid washed 60 ml HDPE (Nalgene) bottles. Surface samples were also taken from the trace metal clean fish deployed over the starboard quarter whenever a mapping exercise of an upwelling filament was carried out. Hence nutrients surface mapping was not performed throughout the duration of the cruise.
Analysis for the nutrient samples was, in most cases, complete within 3-4 hours of sampling. No samples were stored. Analysis was conducted using a Bran and Luebbe AAIII segmented flow colorimetric autoanalyser. Clean handling techniques were employed to avoid any contamination of the samples, particularly ammonium.
BODC Data Processing Procedures
Nutrients data from CTD, underway and incubation sampling were received by BODC as one accession in three separate files: CTD_nutrients_ICON_09.xls,ICON_09_All_Underway_Final.xls, and ICON_09_All_Photo_OX_Final.xls. For profile data, the samples were identified by CTD cast number and approximate bottle firing depth. For underway data sample identifiers and date and time were provided.
Parameter codes defined in the BODC parameter dictionary were mapped to the variables as follows:
Originator's Parameter | Units | Description | BODC Parameter Code | Units | Comments |
---|---|---|---|---|---|
Nitrite | µmol 1-1 | Concentration of nitrite per unit volume of seawater | NTRIAATX | µmol l-1 | none |
Nitrite+Nitrate | µmol l-1 | Concentration of nitrate per unit volume of seawater | NTRZAATX | µmol l-1 | none |
Ammonium | µmol l-1 | Concentration of ammonium per unit volume of seawater | AMONAATX | µmol l-1 | none |
Silicate | µmol l-1 | Concentration of silicate per unit volume of seawater | SLCAAATX | µmol l-1 | none |
Phosphate | µmol l-1 | Concentration of phosphate per unit volume of seawater | PHOSAATX | µmol l-1 | none |
The data were banked according to BODC standard procedures for sample data. The data were banked as received, with no averaging or other modifications applied.
Data Quality Report
The quality and accuracy of the analyses of nitrate, phosphate and silicate were checked by the originator using reference materials supplied by Dr Michio Aoyama from the KANSO company in Japan. These reference materials are close to being globally certified and the exercise was part of a global initiative for a nutrient intercomparability study.
Data values which were indicated as below detection limit or suspect by the originator have been flagged using the appropriate flag in the BODC quality flag scheme.
Project Information
UK Surface Ocean Lower Atmosphere Study
The UK Surface Ocean Lower Atmosphere Study (UK SOLAS) is the UK's contribution to the international SOLAS programme.
UK SOLAS formed interdisciplinary teams to address three primary aims
- To determine the mechanisms controlling rates of chemical transfer and improve estimates of chemical exchanges
- To evaluate the impact of these exchanges on the biogeochemistry of the surface ocean and lower atmosphere and on feedbacks between the ocean and atmosphere
- To quantify the impacts of these boundary layer processes on the global climate system
UK SOLAS started in 2003, to run for seven years. The programme was funded by the Natural Environment Research Council.
Funded projects
In total, 19 projects have been funded by UK SOLAS, over four funding rounds.
Project Title | Short Title | Principal Investigator |
---|---|---|
Impact of atmospheric dust derived material and nutrient inputs on near-surface plankton microbiota in the tropical North Atlantic | Dust | Eric Achterberg |
The role and effects of photoprotective compounds in marine plankton | - | Steve Archer |
Field observations of sea spray, gas fluxes and whitecaps | SEASAW | Ian Brooks |
Factors influencing the biogeochemistry of iodine in the marine environment | - | Lucy Carpenter |
Global model of aerosol processes - effects of aerosol in the marine atmospheric boundary layer | GLOMAP | Ken Carslaw |
Ecological controls on fluxes of dimethyl sulphide (DMS) to the atmosphere | - | David Green |
Dust outflow and deposition to the ocean | DODO | Ellie Highwood |
Investigation of near surface production of iodocarbons - rates and exchanges | INSPIRE | Gill Malin |
Reactive halogens in the marine boundary layer | RHaMBLe | Gordon McFiggans |
The role of bacterioneuston in determining trace gas exchange rates | - | Colin Murrell |
Measuring methanol in sea water and investigating its sources and sinks in the marine environment | - | Phil Nightingale |
The impact of coastal upwellings on air-sea exchange of climatically important gases | ICON | Carol Robinson |
The Deep Ocean Gas Exchange Experiment | DOGEE | Rob Upstill-Goddard |
High wind air-sea exchanges | HiWASE | Margaret Yelland |
Aerosol characterisation and modelling in the marine environment | ACMME | James Allan |
3D simulation of dimethyl sulphide (DMS) in the north east Atlantic | - | Icarus Allen |
Processes affecting the chemistry and bioavailability of dust borne iron | - | Michael Krom |
The chemical structure of the lowermost atmosphere | - | Alastair Lewis |
Factors influencing the oxidative chemistry of the marine boundary layer | - | Paul Monks |
UK SOLAS has also supported ten tied studentships, and two CASE studentships.
Fieldwork
UK SOLAS fieldwork has included eight dedicated research cruises in the North Atlantic Ocean. Continuous measurements were made aboard aboard the Norwegian weather ship, Polarfront, until her decommission in 2009. Time series have been established at the SOLAS Cape Verde Observatory, and at the Plymouth Marine Laboratory L4 station. Experiments have taken place at the Bergen mesocosm facility.
A series of collaborative aircraft campaigns have added complementary atmospheric data. These campaigns were funded by UK SOLAS, African Monsoon Multidisciplinary Analyses (AMMA-UK), Dust and Biomass Experiment (DABEX) and the Facility for Airborne Atmospheric Measurements (FAAM).
Weblink: http://www.nerc.ac.uk/research/programmes/solas/
Data Activity or Cruise Information
Cruise
Cruise Name | D338 |
Departure Date | 2009-04-15 |
Arrival Date | 2009-05-27 |
Principal Scientist(s) | Carol Robinson (University of East Anglia School of Environmental Sciences) |
Ship | RRS Discovery |
Complete Cruise Metadata Report is available here
Fixed Station Information
No Fixed Station Information held for the Series
BODC Quality Control Flags
The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:
Flag | Description |
---|---|
Blank | Unqualified |
< | Below detection limit |
> | In excess of quoted value |
A | Taxonomic flag for affinis (aff.) |
B | Beginning of CTD Down/Up Cast |
C | Taxonomic flag for confer (cf.) |
D | Thermometric depth |
E | End of CTD Down/Up Cast |
G | Non-taxonomic biological characteristic uncertainty |
H | Extrapolated value |
I | Taxonomic flag for single species (sp.) |
K | Improbable value - unknown quality control source |
L | Improbable value - originator's quality control |
M | Improbable value - BODC quality control |
N | Null value |
O | Improbable value - user quality control |
P | Trace/calm |
Q | Indeterminate |
R | Replacement value |
S | Estimated value |
T | Interpolated value |
U | Uncalibrated |
W | Control value |
X | Excessive difference |
SeaDataNet Quality Control Flags
The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:
Flag | Description |
---|---|
0 | no quality control |
1 | good value |
2 | probably good value |
3 | probably bad value |
4 | bad value |
5 | changed value |
6 | value below detection |
7 | value in excess |
8 | interpolated value |
9 | missing value |
A | value phenomenon uncertain |
B | nominal value |
Q | value below limit of quantification |