Search the data

Metadata Report for BODC Series Reference Number 1678089


Metadata Summary

Data Description

Data Category Water sample data
Instrument Type
NameCategories
Non-toxic sea water supply  continuous water samplers
Instrument Mounting research vessel
Originating Country Belgium
Originator Dr Andre Pollentier
Originating Organization RBINS Management Unit of North Sea and Scheldt Estuary Mathematical Models, Ostend (now Royal Belgian Institute of Natural Sciences, Operational Directorate Natural Environment, Ostend)
Processing Status banked
Online delivery of data Download available - Ocean Data View (ODV) format
Project(s) OMEX II-II
 

Data Identifiers

Originator's Identifier BG9919B_GPUMP_PIGX_74:
BODC Series Reference 1678089
 

Time Co-ordinates(UT)

Start Time (yyyy-mm-dd hh:mm) 1999-09-04 09:49
End Time (yyyy-mm-dd hh:mm) 1999-09-11 09:43
Nominal Cycle Interval -
 

Spatial Co-ordinates

Southernmost Latitude 42.13103 N ( 42° 7.9' N )
Northernmost Latitude 43.42414 N ( 43° 25.4' N )
Westernmost Longitude 10.03659 W ( 10° 2.2' W )
Easternmost Longitude 8.37134 W ( 8° 22.3' W )
Positional Uncertainty Unspecified
Minimum Sensor or Sampling Depth 3.5 m
Maximum Sensor or Sampling Depth 3.5 m
Minimum Sensor or Sampling Height -
Maximum Sensor or Sampling Height -
Sea Floor Depth -
Sea Floor Depth Source -
Sensor or Sampling Distribution Unspecified -
Sensor or Sampling Depth Datum Unspecified -
Sea Floor Depth Datum Unspecified -
 

Parameters

BODC CODERankUnitsTitle
AADYAA011DaysDate (time from 00:00 01/01/1760 to 00:00 UT on day)
AAFDZZ011DaysTime (time between 00:00 UT and timestamp)
ALATGP011DegreesLatitude north relative to WGS84 by unspecified GPS system
ALONGP011DegreesLongitude east relative to WGS84 by unspecified GPS system
CPHLFLP31Milligrams per cubic metreConcentration of chlorophyll-a {chl-a CAS 479-61-8} per unit volume of the water body [particulate >GF/C phase] by filtration, acetone extraction and fluorometry
PHAEFLP31Milligrams per cubic metreConcentration of phaeopigments {pheopigments} per unit volume of the water body [particulate >GF/C phase] by filtration, acetone extraction and fluorometry

Definition of Rank

  • Rank 1 is a one-dimensional parameter
  • Rank 2 is a two-dimensional parameter
  • Rank 0 is a one-dimensional parameter describing the second dimension of a two-dimensional parameter (e.g. bin depths for moored ADCP data)

Problem Reports

No Problem Report Found in the Database


Data Access Policy

Public domain data

These data have no specific confidentiality restrictions for users. However, users must acknowledge data sources as it is not ethical to publish data without proper attribution. Any publication or other output resulting from usage of the data should include an acknowledgment.

The recommended acknowledgment is

"This study uses data from the data source/organisation/programme, provided by the British Oceanographic Data Centre and funded by the funding body."


Narrative Documents

Non-toxic (underway) sea water supply

A source of uncontaminated near-surface (commonly 3 to 7 m) seawater pumped continuously to shipboard laboratories on research vessels. There is typically a temperature sensor near the intake (known as the hull temperature) to provide measurements that are as close as possible to the ambient water temperature. The flow from the supply is typically directed through continuously logged sensors such as a thermosalinograph and a fluorometer. Water samples are often collected from the non-toxic supply. The system is also referred to as the underway supply.

Pigments for cruises Belgica BG9714B, BG9714C, BG9714D, BG9815C, BG9919B, BG9919C, BG9815D, BG9919A and BG9919D

Document History

Converted from CDROM documentation

Content of data series

ABCRHPP1 Alpha-carotene plus beta-carotene
HPLC assay of acetone extract (GF/F filtered)
Nanograms per litre
ALLOHPP1 Alloxanthin
HPLC assay of acetone extract (GF/F filtered)
Nanograms per litre
BCARHPP1 Beta-carotene
HPLC assay of acetone extract (GF/F filtered)
Nanograms per litre
BUTAHPP1 Butanoyloxyfucoxanthin
HPLC assay of acetone extract (GF/F filtered)
Nanograms per litre
C1C2HPP1 Chlorophyll-c1c2
HPLC assay of acetone extract (GF/F filtered)
Nanograms per litre
CHLBHPP1 Chlorophyll-b
HPLC assay of acetone extract (GF/F filtered)
Nanograms per litre
CLC3HPP1 Chlorophyll-c3
HPLC assay of acetone extract (GF/F filtered)
Nanograms per litre
CPHLFLP1 Fluorometric chlorophyll-a
Fluorometric assay of acetone extract (GF/F filtered)
Milligrams/cubic metre
CPHLFLP3 Fluorometric chlorophyll-a
Fluorometric assay of acetone extract (GF/C filtered)
Milligrams/cubic metre
CPHLFLP4 Fluorometric chlorophyll-a
Fluorometric assay of acetone extraction (sum of size fractions >0.2 microns)
Milligrams/cubic metre
CPHLFLP6 Fluorometric chlorophyll-a
Fluorometric assay of acetone extraction (sum of size fractions >GF/F)
Milligrams/cubic metre
CPHLHPP1 HPLC chlorophyll-a
HPLC assay of acetone extract (GF/F filtered)
Milligrams/cubic metre
CPHLPR01 CTD chlorophyll
Calibrated in-situ fluorometer
Milligrams/cubic metre
CPHLSSP6 Spectrophotometric chlorophyll-a (Jeffrey and Humphrey trichromatic)
Spectrophotometric assay of acetone extraction (sum of size fractions >GF/F)
Milligrams/cubic metre
CPHLYMP1 Fluorometric chlorophyll-a
Yentsch+Menzel fluorometric assay on acetone extract (GF/F filtered)
Milligrams/cubic metre
DIADHPP1 Diadinoxanthin
HPLC assay of acetone extract (GF/F filtered)
Nanograms per litre
DIATHPP1 Diatoxanthin
HPLC assay of acetone extract (GF/F filtered)
Nanograms per litre
DVCAHPP1 Diavinyl chlorophyll-a
HPLC assay of acetone extract (GF/F filtered)
Nanograms per litre
DVCBHPP1 Diavinyl chlorophyll-b
HPLC assay of acetone extract (GF/F filtered)
Nanograms per litre
FUCXHPP1 Fucoxanthin
HPLC assay of acetone extract (GF/F filtered)
Nanograms per litre
FVLTAQ01 Chelsea Instruments Aquatracka fluorometer output voltage
Output voltage sampled by analogue to digital converter
Volts
HEXOHPP1 Hexanoyloxyfucoxanthin
HPLC assay of acetone extract (GF/F filtered)
Nanograms per litre
LUTNHPP1 Lutein
HPLC assay of acetone extract (GF/F filtered)
Nanograms per litre
PBAXHPP1 Phaeophorbide-a
HPLC assay of acetone extract (GF/F filtered)
Nanograms per litre
PBBXHPP1 Phaeophorbide-b
HPLC assay of acetone extract (GF/F filtered)
Nanograms per litre
PERIHPP1 Peridinin
HPLC assay of acetone extract (GF/F filtered)
Nanograms per litre
PHAEFLP1 Fluorometric phaeopigments
Fluorometric assay of acetone extract (GF/F filtered)
Milligrams/cubic metre
PHAEFLP3 Fluorometric phaeopigments
Fluorometric assay of acetone extract (GF/C filtered)
Milligrams/cubic metre
PTAXHPP1 Phaeophytin-a
HPLC assay of acetone extract (GF/F filtered)
Nanograms per litre
PYPTHPP1 Pyrophaeophytin-a
HPLC assay of acetone extract (GF/F filtered)
Nanograms per litre
SCHLFLPA Size-fractionated fluorometric chlorophyll-a
Fluorometric assay of acetone extract (>5 micron size fraction)
Milligrams/cubic metre
SCHLFLPC Size-fractionated fluorometric chlorophyll-a
Fluorometric assay of acetone extract (2-5 micron size fraction)
Milligrams/cubic metre
SCHLFLPF Size-fractionated fluorometric chlorophyll-a
Fluorometric assay of acetone extract (0.2-2 micron size fraction)
Milligrams/cubic metre
SCHLSSPA Size-fractionated fluorometric chlorophyll-a (Jeffrey and Humphrey trichromatic)
Spectrophotometric assay of acetone extraction (>5 micron size fraction)
Milligrams/cubic metre
SCHLSSPC Size-fractionated fluorometric chlorophyll-a (Jeffrey and Humphrey trichromatic)
Spectrophotometric assay of acetone extraction (2-5 micron size fraction)
Milligrams/cubic metre
SCHLSSPN Size-fractionated fluorometric chlorophyll-a (Jeffrey and Humphrey trichromatic)
Spectrophotometric assay of acetone extraction (GF/F-2 micron size fraction)
Milligrams/cubic metre
VILXHPP1 Violaxentin
HPLC assay of acetone extract (GF/F filtered)
Nanograms per litre
ZEOXHPP1 Zeoxantin
HPLC assay of acetone extract (GF/F filtered)
Nanograms per litre

Data Originator

Ir Andre Pollentier, BMM, Ostend, Belgium.

Sampling strategy and methodology

These samples were primarily collected for the calibration of the underway fluorometer. Consequently, except where samples were taken from CTD bottles for intercalibration purposes, the samples were taken from the non-toxic supply.

The water samples were filtered through GF/C filters. The filter papers were carefully folded, enclosed in aluminium foil capsules and placed in a chest freezer.

Back in the laboratory, the filters were extracted into 90% acetone and assayed fluorometrically.

Comments on data quality

The HPLC analyst reported that for BG9919 fucoxanthin may contain phaeophorbides and the chlorophyll-a data loaded were the sum of chlorophyll-a and chlorophyll-a allomer.

References

Barlow, R.G., Mantoura, R.F.C., Gough, M.A. and Fileman, T.W., 1993a. Pigment signatures of the phytoplankton composition in the north-east Atlantic during the 1990 spring bloom. Deep Sea Res. II, 40, 459-477.

Barlow, R.G., Mantoura, R.F.C., Gough, M.A. and Fileman, T.W., 1993b. Phaeopigment distribution during the 1990 spring bloom in the north-east Atlantic. Deep Sea Res. I, 40, 2229-2242.

Barlow, R.G., Cummings, D.G., Mantoura, R.F.C. and Fileman, T.W., 1996. Pigment chemotaxonomic distributions of phytoplankton during summer in the western Mediterranean. Deep Sea Res. II, in press.

Jeffrey, S.W. and Humphrey, G.F., 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflan., 167, 191-194.

Lorenzen, C.J., 1967. Determination of chlorophyll and phaeopigments: spectrophotometric equations. Limnology and Oceanography, 12.

Tahey, T.M., Duineveld, G.C.A., Berghuis, E.M. and Helder, W., 1994. Relation between sediment-water fluxes of oxygen and silicate and faunal abundance at continental shelf, slope and deep-water stations in the North West Mediterranean. Marine Ecology Progress Series, 104, 119-130.

Thomsen. L., Graf, G., Martens, V. and Steen, E., 1994. An instrument for sampling water from the bottom nepheloid layer. Contin. Shelf Res., 14, 871-882.

Thomsen, L. and Graf, G., 1995. Benthic boundary layer characteristics of the continental margin of the western Barents Sea. Oceanologica Acta, 17/6, 597-607.

Wright, S.W., Jeffrey, S.W., Mantoura, R.F.C., Llewellyn, C.A., Bjornland, T., Repeta, D. and Welschmeyer, N., 1991. Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Marine Ecology Progress Series, 77, 183-196.

Yentsch, C.S. and Menzel, D.W., 1963. A method for the determination of phytoplankton chlorophyll and phaeophytin by fluoresence. Deep-Sea Res., 10, 221-231.


Project Information

Ocean Margin EXchange (OMEX) II - II

Introduction

OMEX was a European multidisciplinary oceanographic research project that studied and quantified the exchange processes of carbon and associated elements between the continental shelf of western Europe and the open Atlantic Ocean. The project ran in two phases known as OMEX I (1993-1996) and OMEX II - II (1997-2000), with a bridging phase OMEX II - I (1996-1997). The project was supported by the European Union under the second and third phases of its MArine Science and Technology Programme (MAST) through contracts MAS2-CT93-0069 and MAS3-CT97-0076. It was led by Professor Roland Wollast from Université Libre de Bruxelles, Belgium and involved more than 100 scientists from 10 European countries.

Scientific Objectives

The aim of the Ocean Margin EXchange (OMEX) project was to gain a better understanding of the physical, chemical and biological processes occurring at the ocean margins in order to quantify fluxes of energy and matter (carbon, nutrients and other trace elements) across this boundary. The research culminated in the development of quantitative budgets for the areas studied using an approach based on both field measurements and modeling.

OMEX II - II (1997-2000)

The second phase of OMEX concentrated exclusively on the Iberian Margin, although RV Belgica did make some measurements on La Chapelle Bank whilst on passage to Zeebrugge. This is a narrow-shelf environment, which contrasts sharply with the broad shelf adjacent to the Goban Spur. This phase of the project was also strongly multidisciplinary in approach, covering physics, chemistry, biology and geology.

There were a total of 33 OMEX II - II research cruises, plus 23 CPR tows, most of which were instrumented. Some of these cruises took place before the official project start date of June 1997.

Data Availability

Field data collected during OMEX II - II have been published by BODC as a CD-ROM product, entitled:

  • OMEX II Project Data Set (three discs)

Further descriptions of this product and order forms may be found on the BODC web site.

The data are also held in BODC's databases and subsets may be obtained by request from BODC.


Data Activity or Cruise Information

Cruise

Cruise Name BG9919B
Departure Date 1999-09-04
Arrival Date 1999-09-11
Principal Scientist(s)Michel Frankignoulle (University of Liège Department of Astrophysics Geophysics and Oceanography)
Ship RV Belgica

Complete Cruise Metadata Report is available here


Fixed Station Information


No Fixed Station Information held for the Series


BODC Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
Blank Unqualified
< Below detection limit
> In excess of quoted value
A Taxonomic flag for affinis (aff.)
B Beginning of CTD Down/Up Cast
C Taxonomic flag for confer (cf.)
D Thermometric depth
E End of CTD Down/Up Cast
G Non-taxonomic biological characteristic uncertainty
H Extrapolated value
I Taxonomic flag for single species (sp.)
K Improbable value - unknown quality control source
L Improbable value - originator's quality control
M Improbable value - BODC quality control
N Null value
O Improbable value - user quality control
P Trace/calm
Q Indeterminate
R Replacement value
S Estimated value
T Interpolated value
U Uncalibrated
W Control value
X Excessive difference

SeaDataNet Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
0 no quality control
1 good value
2 probably good value
3 probably bad value
4 bad value
5 changed value
6 value below detection
7 value in excess
8 interpolated value
9 missing value
A value phenomenon uncertain
B nominal value
Q value below limit of quantification