Search the data

Metadata Report for BODC Series Reference Number 1749222


Metadata Summary

Data Description

Data Category Currents -subsurface Eulerian
Instrument Type
NameCategories
Teledyne RDI Ocean Surveyor 75kHz vessel-mounted ADCP  current profilers
Instrument Mounting research vessel
Originating Country United Kingdom
Originator Prof Penny Holliday
Originating Organization National Oceanography Centre, Southampton
Processing Status banked
Online delivery of data Download available - Ocean Data View (ODV) format
Project(s) UK-OSNAP
 

Data Identifiers

Originator's Identifier OS75_DY054_01
BODC Series Reference 1749222
 

Time Co-ordinates(UT)

Start Time (yyyy-mm-dd hh:mm) 2016-07-27 08:50
End Time (yyyy-mm-dd hh:mm) 2016-08-15 05:54
Nominal Cycle Interval 300.0 seconds
 

Spatial Co-ordinates

Start Latitude 64.15940 N ( 64° 9.6' N )
End Latitude 49.74320 N ( 49° 44.6' N )
Start Longitude 21.92420 W ( 21° 55.5' W )
End Longitude 5.75550 W ( 5° 45.3' W )
Positional Uncertainty 0.0 to 0.01 n.miles
Minimum Sensor or Sampling Depth 30.53 m
Maximum Sensor or Sampling Depth 974.59 m
Minimum Sensor or Sampling Height -
Maximum Sensor or Sampling Height -
Sea Floor Depth -
Sea Floor Depth Source -
Sensor or Sampling Distribution Sensor fixed with measurements made at multiple depths within a fixed range (e.g. ADCP) - The sensor is at a fixed depth, but measurements are made remotely from the sensor over a range of depths (e.g. ADCP measurements)
Sensor or Sampling Depth Datum Instantaneous - Depth measured below water line or instantaneous water body surface
Sea Floor Depth Datum Instantaneous - Depth measured below water line or instantaneous water body surface
 

Parameters

BODC CODERankUnitsTitle
BINNUMBR0DimensionlessBin number
AADYAA011DaysDate (time from 00:00 01/01/1760 to 00:00 UT on day)
AAFDZZ011DaysTime (time between 00:00 UT and timestamp)
ACYCAA011DimensionlessSequence number
ALATGP011DegreesLatitude north relative to WGS84 by unspecified GPS system
ALONGP011DegreesLongitude east relative to WGS84 by unspecified GPS system
APEWAS011Centimetres per secondEastward velocity of measurement platform relative to ground surface by Ashtech GPS
APNSAS011Centimetres per secondNorthward velocity of measurement platform relative to ground surface by Ashtech GPS
APSAZZ011Metres per secondSpeed of measurement platform relative to ground surface {speed over ground}
DBINAA012MetresDepth (spatial coordinate) of ADCP bin relative to water surface {bin depth} in the water body
LCEWAS012Centimetres per secondEastward velocity of water current (Eulerian measurement) in the water body by shipborne acoustic doppler current profiler (ADCP)
LCNSAS012Centimetres per secondNorthward velocity of water current (Eulerian measurement) in the water body by shipborne acoustic doppler current profiler (ADCP)
LCSAAS012Centimetres per secondSpeed of water current (Eulerian measurement) in the water body by shipborne acoustic doppler current profiler (ADCP)

Definition of Rank

  • Rank 1 is a one-dimensional parameter
  • Rank 2 is a two-dimensional parameter
  • Rank 0 is a one-dimensional parameter describing the second dimension of a two-dimensional parameter (e.g. bin depths for moored ADCP data)

Problem Reports

No Problem Report Found in the Database


Data Access Policy

Open Data supplied by Natural Environment Research Council (NERC)

You must always use the following attribution statement to acknowledge the source of the information: "Contains data supplied by Natural Environment Research Council."


Narrative Documents

RD Instruments- Ocean Surveyor 75kHz Vessel mounted ADCP.

Long-Range Mode
Vertical Resolution Cell Size3 Max. Range (m)1 Precision (cm/s)2
8m 520 - 650 30
16m 560 - 700 17
High-Precision Mode
Vertical Resolution Cell Size3 Max. Range (m)1 Precision (cm/s)2
8m 310 - 430 12
16m 350 - 450 9

1 Ranges at 1 to 5 knots ship speed are typical and vary with situation.
2 Single-ping standard deviation.
3 User's choice of depth cell size is not limited to the typical values specified.

Profile Parameters

  • Velocity long-term accuracy (typical): ±1.0%, ±0.5cm/s
  • Velocity range: -5 to 9m/s
  • # of depth cells: 1 - 128
  • Max ping rate: 0.7

Bottom Track

Maximum altitude (precision <2cm/s): 950m

Echo Intensity Profile

Dynamic range: 80dB
Precision: ±1.5dB

Transducer and Hardware

Beam angle: 30°
Configuration: 4-beam phased array
Communications: RS-232 or RS-422 hex-ASCII or binary output at 1200 - 115,200 baud
Output power: 1000W

Standard Sensors

Temperature (mounted on transducer)

  • Range: -5° to 45°C
  • Precision: ±0.1°C
  • Resolution: 0.03°

Environmental

Operating temperature: -5° to 40°C (-5° to 45°C)*
Storage temperature: -30° to 50°C (-30° to 60°C)*

*later instruments have greater range.

Web Page

Further details can be found on the manufacturer's website or in the specification sheet

BODC Processing

Data were received at BODC in MStar format files.

The data were reformatted to the internal NetCDF format using BODC-generated Matlab code. The following table shows how the variables within the files were mapped to appropriate BODC parameter codes:

Originator's variable Units Description BODC Code Units Comments
uabs cm s-1 Absolute eastward water velocity (Eulerian) by ADCP LCEWAS01 cm s-1 -
vabs cm s-1 Absolute northward water velocity (Eulerian) by ADCP LCNSAS01 cm s-1 -
time seconds - - - Not transferred - recalculated by the transfer
lon degrees Longitude east (WGS84) using unspecified GPS system ALONGP01 degrees -
lat degrees Latitude north (WGS84) using unspecified GPS system ALATGP01 degrees -
uship m s-1 Eastward velocity (over ground) of measurement platform by Ashtech GPS APEWAS01 cm s-1 conversion: multiply by 100
vship m s-1 Northward velocity (over ground) of measurement platform by Ashtech GPS APNSAS01 cm s-1 conversion: multiply by 100
depth metres ADCP bin depth (bottom of bin) DBINAA01 metres -
decday days - - - Not transferred - recalculated by the transfer
speed cm s-1 Absolute water speed (Eulerian) by ADCP LCSAAS01 cm s-1 derived from uabs and vabs
shipspd m s-1 Ship speed over the ground APSAZZ01 m s-1 derived from uship and vship

Following transfer the data were screened using BODC in-house visualisation software. Suspect data values were assigned the appropriate BODC data quality flag. Missing data values, where present, were changed to the missing data value and assigned a BODC data quality flag

Originator's Data Processing

Instrument Description

There are two Vessel Mounted Acoustic Doppler current profilers (ADCPs) on DY054; the 150 kHz and the 75 kHz. The 75kHz instrument is a Teledyne RDI Ocean Surveyor 75 (serial number 1813) using VMDas version 1.46.5.

Sampling strategy

During the cruise the 75 kHz data were processed every day, using CODAS version 2015.05.01_python. The median amplitude correction estimated from the bottom track data is 1.0149 (standard deviation of 0.0064) and the median phase correction is 0.7604° (std of 0.4885°). See the cruise report for further information.

The processed MStar data, together with the raw data, were supplied to BODC for banking.


Project Information

UK - Overturning in the Subpolar North Atlantic Programme (UK-OSNAP) Programme

UK-OSNAP is part of an international collaboration to establish a transoceanic observing system in the subpolar North Atlantic. The aim is to quantify and understand the Subpolar Gyre's response to local and remote forcing of mass, heat and freshwater fluxes, within the conceptual framework of the Atlantic Meridional Overturning Circulation (AMOC).

UK-OSNAP is developing a new observing system to provide a continuous record of full-depth, trans-basin mass, heat, and freshwater fluxes. Combining these sustained measurements with innovative modelling techniques will enable the project to characterise the circulation and fluxes of the North Atlantic Subpolar Gyre.

UK-OSNAP is funded by the Natural Environment Research Council (NERC). The project is led by the National Oceanography Centre (NOC) with partners in the University of Liverpool, the University of Oxford and the Scottish Association for Marine Science (SAMS). It is a part of international OSNAP that is led by USA and includes 10 further partner groups in Canada, France, Germany, the Netherlands and China. The project involves fieldwork at sea and model studies.

The OSNAP observing system consists of two legs: one extending from southern Labrador to the southwestern tip of Greenland across the mouth of the Labrador Sea (OSNAP West), and the second from the southeastern tip of Greenland to Scotland (OSNAP East). The observing system also includes subsurface floats (OSNAP Floats) in order to trace the pathways of overflow waters in the basin and to assess the connectivity of currents crossing the OSNAP line.

NERC have added an extension to UK-OSNAP, until October 2024. This will result in the UK-OSNAP-Decade: 10 years of observing and understanding the overturning circulation in the subpolar North Atlantic (2014-2024).


Data Activity or Cruise Information

Cruise

Cruise Name DY054
Departure Date 2016-07-27
Arrival Date 2016-08-17
Principal Scientist(s)N Penny Holliday (National Oceanography Centre, Southampton)
Ship RRS Discovery

Complete Cruise Metadata Report is available here


Fixed Station Information


No Fixed Station Information held for the Series


BODC Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
Blank Unqualified
< Below detection limit
> In excess of quoted value
A Taxonomic flag for affinis (aff.)
B Beginning of CTD Down/Up Cast
C Taxonomic flag for confer (cf.)
D Thermometric depth
E End of CTD Down/Up Cast
G Non-taxonomic biological characteristic uncertainty
H Extrapolated value
I Taxonomic flag for single species (sp.)
K Improbable value - unknown quality control source
L Improbable value - originator's quality control
M Improbable value - BODC quality control
N Null value
O Improbable value - user quality control
P Trace/calm
Q Indeterminate
R Replacement value
S Estimated value
T Interpolated value
U Uncalibrated
W Control value
X Excessive difference

SeaDataNet Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
0 no quality control
1 good value
2 probably good value
3 probably bad value
4 bad value
5 changed value
6 value below detection
7 value in excess
8 interpolated value
9 missing value
A value phenomenon uncertain
B nominal value
Q value below limit of quantification