Search the data

Metadata Report for BODC Series Reference Number 1796097


Metadata Summary

Data Description

Data Category CTD or STD cast
Instrument Type
NameCategories
Sea-Bird SBE 43 Dissolved Oxygen Sensor  dissolved gas sensors
Sea-Bird SBE 911plus CTD  CTD; water temperature sensor; salinity sensor
Tritech PA-200 Altimeter  altimeters
WET Labs {Sea-Bird WETLabs} C-Star transmissometer  transmissometers
Biospherical QCD-905L underwater PAR sensor  radiometers
Sea-Bird SBE 3plus (SBE 3P) temperature sensor  water temperature sensor
Sea-Bird SBE 4C conductivity sensor  salinity sensor
Chelsea Technologies Group Aquatracka III fluorometer  fluorometers
Instrument Mounting lowered unmanned submersible
Originating Country United Kingdom
Originator Prof Mike Meredith
Originating Organization British Antarctic Survey
Processing Status banked
Online delivery of data Download available - Ocean Data View (ODV) format
Project(s) ORCHESTRA
 

Data Identifiers

Originator's Identifier JR15006_CTD049
BODC Series Reference 1796097
 

Time Co-ordinates(UT)

Start Time (yyyy-mm-dd hh:mm) 2016-04-21 08:30
End Time (yyyy-mm-dd hh:mm) -
Nominal Cycle Interval 1.0 decibars
 

Spatial Co-ordinates

Latitude 53.80800 S ( 53° 48.5' S )
Longitude 35.58567 W ( 35° 35.1' W )
Positional Uncertainty 0.0 to 0.01 n.miles
Minimum Sensor or Sampling Depth 0.99 m
Maximum Sensor or Sampling Depth 1639.67 m
Minimum Sensor or Sampling Height -
Maximum Sensor or Sampling Height -
Sea Floor Depth -
Sea Floor Depth Source -
Sensor or Sampling Distribution Variable common depth - All sensors are grouped effectively at the same depth, but this depth varies significantly during the series
Sensor or Sampling Depth Datum Instantaneous - Depth measured below water line or instantaneous water body surface
Sea Floor Depth Datum -
 

Parameters

BODC CODERankUnitsTitle
ACYCAA011DimensionlessSequence number
AHSFZZ011MetresHeight (spatial coordinate) relative to bed surface in the water body
CNDCST011Siemens per metreElectrical conductivity of the water body by CTD
CPHLPR011Milligrams per cubic metreConcentration of chlorophyll-a {chl-a CAS 479-61-8} per unit volume of the water body [particulate >unknown phase] by in-situ chlorophyll fluorometer
DOXYZZ011Micromoles per litreConcentration of oxygen {O2 CAS 7782-44-7} per unit volume of the water body [dissolved plus reactive particulate phase] by in-situ sensor
IRRDUV011MicroEinsteins per square metre per secondDownwelling vector irradiance as photons of electromagnetic radiation (PAR wavelengths) in the water body by cosine-collector radiometer
OXYSZZ011PercentSaturation of oxygen {O2 CAS 7782-44-7} in the water body [dissolved plus reactive particulate phase]
POPTDR011PercentTransmittance (red light wavelength) per 25cm of the water body by 25cm path length red light transmissometer
POTMCV011Degrees CelsiusPotential temperature of the water body by computation using UNESCO 1983 algorithm
PRESPR011DecibarsPressure (spatial coordinate) exerted by the water body by profiling pressure sensor and correction to read zero at sea level
PSALST011DimensionlessPractical salinity of the water body by CTD and computation using UNESCO 1983 algorithm
SIGTPR011Kilograms per cubic metreSigma-theta of the water body by CTD and computation from salinity and potential temperature using UNESCO algorithm
TEMPST011Degrees CelsiusTemperature of the water body by CTD or STD

Definition of Rank

  • Rank 1 is a one-dimensional parameter
  • Rank 2 is a two-dimensional parameter
  • Rank 0 is a one-dimensional parameter describing the second dimension of a two-dimensional parameter (e.g. bin depths for moored ADCP data)

Problem Reports

No Problem Report Found in the Database


Data Access Policy

Open Data supplied by Natural Environment Research Council (NERC)

You must always use the following attribution statement to acknowledge the source of the information: "Contains data supplied by Natural Environment Research Council."


Narrative Documents

Sea-Bird Dissolved Oxygen Sensor SBE 43 and SBE 43F

The SBE 43 is a dissolved oxygen sensor designed for marine applications. It incorporates a high-performance Clark polarographic membrane with a pump that continuously plumbs water through it, preventing algal growth and the development of anoxic conditions when the sensor is taking measurements.

Two configurations are available: SBE 43 produces a voltage output and can be incorporated with any Sea-Bird CTD that accepts input from a 0-5 volt auxiliary sensor, while the SBE 43F produces a frequency output and can be integrated with an SBE 52-MP (Moored Profiler CTD) or used for OEM applications. The specifications below are common to both.

Specifications

Housing Plastic or titanium
Membrane

0.5 mil- fast response, typical for profile applications

1 mil- slower response, typical for moored applications

Depth rating

600 m (plastic) or 7000 m (titanium)

10500 m titanium housing available on request

Measurement range 120% of surface saturation
Initial accuracy 2% of saturation
Typical stability 0.5% per 1000 h

Further details can be found in the manufacturer's specification sheet.

Sea-Bird Electronics SBE 911 and SBE 917 series CTD profilers

The SBE 911 and SBE 917 series of conductivity-temperature-depth (CTD) units are used to collect hydrographic profiles, including temperature, conductivity and pressure as standard. Each profiler consists of an underwater unit and deck unit or SEARAM. Auxiliary sensors, such as fluorometers, dissolved oxygen sensors and transmissometers, and carousel water samplers are commonly added to the underwater unit.

Underwater unit

The CTD underwater unit (SBE 9 or SBE 9 plus) comprises a protective cage (usually with a carousel water sampler), including a main pressure housing containing power supplies, acquisition electronics, telemetry circuitry, and a suite of modular sensors. The original SBE 9 incorporated Sea-Bird's standard modular SBE 3 temperature sensor and SBE 4 conductivity sensor, and a Paroscientific Digiquartz pressure sensor. The conductivity cell was connected to a pump-fed plastic tubing circuit that could include auxiliary sensors. Each SBE 9 unit was custom built to individual specification. The SBE 9 was replaced in 1997 by an off-the-shelf version, termed the SBE 9 plus, that incorporated the SBE 3 plus (or SBE 3P) temperature sensor, SBE 4C conductivity sensor and a Paroscientific Digiquartz pressure sensor. Sensors could be connected to a pump-fed plastic tubing circuit or stand-alone.

Temperature, conductivity and pressure sensors

The conductivity, temperature, and pressure sensors supplied with Sea-Bird CTD systems have outputs in the form of variable frequencies, which are measured using high-speed parallel counters. The resulting count totals are converted to numeric representations of the original frequencies, which bear a direct relationship to temperature, conductivity or pressure. Sampling frequencies for these sensors are typically set at 24 Hz.

The temperature sensing element is a glass-coated thermistor bead, pressure-protected inside a stainless steel tube, while the conductivity sensing element is a cylindrical, flow-through, borosilicate glass cell with three internal platinum electrodes. Thermistor resistance or conductivity cell resistance, respectively, is the controlling element in an optimized Wien Bridge oscillator circuit, which produces a frequency output that can be converted to a temperature or conductivity reading. These sensors are available with depth ratings of 6800 m (aluminium housing) or 10500 m (titanium housing). The Paroscientific Digiquartz pressure sensor comprises a quartz crystal resonator that responds to pressure-induced stress, and temperature is measured for thermal compensation of the calculated pressure.

Additional sensors

Optional sensors for dissolved oxygen, pH, light transmission, fluorescence and others do not require the very high levels of resolution needed in the primary CTD channels, nor do these sensors generally offer variable frequency outputs. Accordingly, signals from the auxiliary sensors are acquired using a conventional voltage-input multiplexed A/D converter (optional). Some Sea-Bird CTDs use a strain gauge pressure sensor (Senso-Metrics) in which case their pressure output data is in the same form as that from the auxiliary sensors as described above.

Deck unit or SEARAM

Each underwater unit is connected to a power supply and data logging system: the SBE 11 (or SBE 11 plus) deck unit allows real-time interfacing between the deck and the underwater unit via a conductive wire, while the submersible SBE 17 (or SBE 17 plus) SEARAM plugs directly into the underwater unit and data are downloaded on recovery of the CTD. The combination of SBE 9 and SBE 17 or SBE 11 are termed SBE 917 or SBE 911, respectively, while the combinations of SBE 9 plus and SBE 17 plus or SBE 11 plus are termed SBE 917 plus or SBE 911 plus.

Specifications

Specifications for the SBE 9 plus underwater unit are listed below:

Parameter Range Initial accuracy Resolution at 24 Hz Response time
Temperature -5 to 35°C 0.001°C 0.0002°C 0.065 sec
Conductivity 0 to 7 S m-1 0.0003 S m-1 0.00004 S m-1 0.065 sec (pumped)
Pressure 0 to full scale (1400, 2000, 4200, 6800 or 10500 m) 0.015% of full scale 0.001% of full scale 0.015 sec

Further details can be found in the manufacturer's specification sheet.

Chelsea Technologies Group Aquatracka MKIII fluorometer

The Chelsea Technologies Group Aquatracka MKIII is a logarithmic response fluorometer. Filters are available to enable the instrument to measure chlorophyll, rhodamine, fluorescein and turbidity.

It uses a pulsed (5.5 Hz) xenon light source discharging along two signal paths to eliminate variations in the flashlamp intensity. The reference path measures the intensity of the light source whilst the signal path measures the intensity of the light emitted from the specimen under test. The reference signal and the emitted light signals are then applied to a ratiometric circuit. In this circuit, the ratio of returned signal to reference signal is computed and scaled logarithmically to achieve a wide dynamic range. The logarithmic conversion accuracy is maintained at better than one percent of the reading over the full output range of the instrument.

Two variants of the instrument are available, both manufactured in titanium, capable of operating in depths from shallow water down to 2000 m and 6000 m respectively. The optical characteristics of the instrument in its different detection modes are visible below:

Excitation Chlorophyll a Rhodamine Fluorescein Turbidity
Wavelength (nm) 430 500 485 440*
Bandwidth (nm) 105 70 22 80*
Emission Chlorophyll a Rhodamine Fluorescein Turbidity
Wavelength (nm) 685 590 530 440*
Bandwidth (nm) 30 45 30 80*

* The wavelengths for the turbidity filters are customer selectable but must be in the range 400 to 700 nm. The same wavelength is used in the excitation path and the emission path.

The instrument measures chlorophyll a, rhodamine and fluorescein with a concentration range of 0.01 µg l-1 to 100 µg l-1. The concentration range for turbidity is 0.01 to 100 FTU (other wavelengths are available on request).

The instrument accuracy is ± 0.02 µg l-1 (or ± 3% of the reading, whichever is greater) for chlorophyll a, rhodamine and fluorescein. The accuracy for turbidity, over a 0 - 10 FTU range, is ± 0.02 FTU (or ± 3% of the reading, whichever is greater).

Further details are available from the Aquatracka MKIII specification sheet.

Biospherical Instruments Log Quantum Cosine Irradiance Sensor QCD-905L

The QCD-905L is a submersible radiometer designed to measure irradiance over Photosynthetically Active Radiation (PAR) wavelengths (400-700 nm). It features a cosine directional response when fully immersed in water.

The sensor is a blue-enhanced high stability silicon photovoltaic detector with dielectric and absorbing glass filter assembly, and produces a logarithmic output. Normal output range is -1 to 6 volts with 1 volt per decade. Typically, the instrument outputs 5 volts for full sunlight and has a minimum output of 0.001% full sunlight, where typical noon solar irradiance is 1.5 to 2 x 1017 quanta cm-2 s-1. The instrument can be calibrated with constants for µE cm-2 s-1 or quanta cm-2 s-1.

The QCD-905L can be coupled to a fixed range data acquisition system like a CTD (Conductivity-Temperature-Depth) profiler or current meter. It has an aluminium and PET housing, and a depth rating of 7000 m.

Specifications

Wavelength 400 to 700 nm
Output range -1 to 6 V, with 1 V decade-1
Operating temperature -2 to 35°C
Depth range 0 - 7000 m

Further details can be found in the manufacturer's manual.

Tritech Digital Precision Altimeter PA200

This altimeter is a sonar ranging device that gives the height above the sea bed when mounted vertically. When mounted in any other attitude the sensor provides a subsea distance. It can be configured to operate on its own or under control from an external unit and can be supplied with simultaneous analogue and digital outputs, allowing them to interface to PC devices, data loggers, telemetry systems and multiplexers.

These instruments can be supplied with different housings, stainless steel, plastic and aluminum, which will limit the depth rating. There are three models available: the PA200-20S, PA200-10L and the PA500-6S, whose transducer options differ slightly.

Specifications

Transducer options PA200-20S P200-10L PA500-6S
Frequency (kHz) 200 200 500
Beamwidth (°) 20 Conical 10 included conical beam 6 Conical
Operating range

1 to 100 m

0.7 to 50 m

-

0.3 to 50 m

0.1 to 10 m

Common specifications are presented below

Digital resolution 1 mm
Analogue resolution 0.25% of range
Depth rating 700 , 2000, 4000 and 6800 m
Operating temperature -10 to 40°C

Further details can be found in the manufacturer's specification sheet.

WETLabs C-Star transmissometer

This instrument is designed to measure beam transmittance by submersion or with an optional flow tube for pumped applications. It can be used in profiles, moorings or as part of an underway system.

Two models are available, a 25 cm pathlength, which can be built in aluminum or co-polymer, and a 10 cm pathlength with a plastic housing. Both have an analog output, but a digital model is also available.

This instrument has been updated to provide a high resolution RS232 data output, while maintaining the same design and characteristics.

Specifications

Pathlength 10 or 25 cm
Wavelength 370, 470, 530 or 660 nm
Bandwidth

~ 20 nm for wavelengths of 470, 530 and 660 nm

~ 10 to 12 nm for a wavelength of 370 nm

Temperature error 0.02 % full scale °C-1
Temperature range 0 to 30°C
Rated depth

600 m (plastic housing)

6000 m (aluminum housing)

Further details are available in the manufacturer's specification sheet or user guide.

BODC Processing Document

The CTD data were supplied to BODC as matlab files and converted to the BODC internal format. During transfer the originator's variables were mapped to unique BODC parameter codes. The following table shows the parameter mapping.

Originator's variable Units Description BODC Code Units Comments
alt m Height above bed in the water body AHSFZZ01 m  
cond1 mS cm-1 Electrical conductivity of the water body by in-situ conductivity cell CNDCST01 S m-1 Conversion by /10
cond2 mS cm-1 Electrical conductivity of the water body by in-situ conductivity cell (second sensor) CNDCST02 S m-1 Secondary channel, Conversion by /10, not retained
fluor_ug_l µg l-1 Concentration of chlorophyll-a {chl-a CAS 479-61-8} per unit volume of the water body [particulate >unknown phase] by in-situ chlorophyll fluorometer CPHLPR01 mg/m3 No unit conversion. µg/l = mg/m3
Oxy_umol_l µmol l-1 Concentration of oxygen {O2 CAS 7782-44-7} per unit volume of the water body [dissolved plus reactive particulate phase] by in-situ sensor DOXYZZ01 µmol l-1  
par   Downwelling vector irradiance as photons (PAR wavelengths) in the water body by cosine-collector radiometer IRRDUV01 µE m-2 s-1  
press db Pressure (spatial co-ordinate) exerted by the water body by profiling pressure sensor and corrected to read zero at sea level PRESPR01 dbar  
psal1   Practical salinity of the water body by conductivity cell and computation using UNESCO 1983 algorithm PSALST01    
psal2   Practical salinity of the water body by CTD (second sensor) and computation using UNESCO 1983 algorithm PSALST02   Secondary channel, not retained
temp1 DegC90 Temperature of the water body by CTD or STD TEMPST01 DegC  
temp2 DegC90 Temperature of the water body by CTD or STD (second sensor) TEMPST02 DegC Secondary channel, not retained
Trans % Transmittance (red light wavelength) per 25cm of the water body by 25cm path length red light transmissometer POPTDR01 %  
    Saturation of oxygen {O2} in the water body [dissolved plus reactive particulate phase] OXYSZZ01 % Derived by BODC using DOXYZZ01, TEMPST01 and PSALST01
    Potential temperature of the water body by computation using unesco 1983 algorithm POTMCV01 °C Derived by BODC using TEMPST01, PSALST01 and PRESPR01.
    Sigma-theta of the water body by CTD and computation from salinity and potential temperature using UNESCO algorithm SIGTPR01 kg m-3 Derived by BODC using POTMCV01, PSALST01 and PRESPR01

Following transfer the data were screened using BODC in-house visualisation software. Suspect data values were assigned the appropriate BODC data quality flag. Missing data values, where present, were changed to the missing data value and assigned a BODC data quality flag.

The originator's file contained the following channels: oxy_percent, potemp1, potemp2, sig0, sig2, sig4. These channels were not transferred but are available upon request. Secondary channels were not retained in the final files but are also available upon request.

Originator's Data Processing

Sampling strategy

A total of 49 CTD casts were performed during JR15006, surveying A23 hydrographic CTD section between the Weddell Sea and South Georgia for the ORCHESTRA programme.

Data Processing

For each CTD casts, the following raw data files were generated (using SeaSave V 7):

  • JR15006_XYZ.bl (a record of bottle firing locations)
  • JR15006_XYZ.hdr (header file)
  • JR15006_XYZ.hex (raw data file)
  • JR15006_XYZ.con (configuration file)

where XYZ is the cast number of the CTD data series.

The first three routines used to clean and process the data contained in these files were run in the SBE Data Processing, more specifically:

  • Data Conversion- converts .hex to AScii
  • Align- applies a time shift to the dissolved oxygen data to account for hysteresis effects
  • Cell Thermal Mass- corrects the data for the thermal mass of the conductivity cell

These files were transferred to the ship's linux network and further processing took place in Matlab enviromnent. The suite of routines used have evolved throughout the years and were modified for JR15006 purposes:

  • ctdread15006 - reads the files into the matlab environment and organizes the subsequent arrays appropriately
  • editctd15006 - launches an interactive editor and enables selection and flagging of data to be removed from subsequent processing. This was used particularly to exclude the soak period, the on-deck period after package recovery, and any noticeably problematic conductivity spikes in the data
  • interpol15006 - applies linear interpolation to fill in gaps created with the step above
  • salcalapp15006 - used to derive variables including salinity, potential temperature, potential density
  • splitcast15006 - divides the cast into its downcast and upcast profiles
  • fallrate15006 - removes data from the files where they are deemed to be contaminated by CTD motion effects. The routine is applied only to the downcast profile, and excludes data from pressure levels that have been previously encountered, and data from periods when the CTD package was descending at less than 0.24 m s-1
  • gridctd15006 - takes the upcast and fallrate-corrected downcast data, and creates 2 dbar averages of all variables.
  • fill_to_surf15006 - applied to fill in the missing few layers from the surface by copying upward the shallowest layer that contains data.
  • ctdplot15006 - creates a set of standardized profile and potential temperature-salinity plots from the 2 dbar data, to enable assessment of the quality of the data collected.
  • average_1Hz_15006 - takes the 24 Hz data (both downcast and upcast) and creates 1 Hz averages for inclusion in the LADCP processing
  • makebot15006 - reads the bottle files into the Matlab environment and extracts the mean and standard deviation of each CTD variable, including derived variables, and flags warnings to the screen if the standard deviations exceed 0.001
  • sb35read15006 - reads SBE35 data into the Matlab environment and plots differences between the SBE35 and the primary and secondary CTD temperatures
  • readsal15006 - reads salinity data from the Excel spreadsheets into which bottle conductivity measurements had been entered and standard-corrected salinity derived
  • addsal15006 - reads the file created with the step above and the file which contains the bottle data from the CTD
  • setsalflag15006 - loads the file created above, and flags those bottles with high standard deviations from temperature and conductivity (variable: "niskflag")
  • salplot15006 - creates a standard plot of bottle salinity measurements and CTD salinity measurements versus pressure and the standard deviation of their differences.
  • salcal15006 - appends information the master file containing salinity calibration data for the cruise as a whole
  • Field calibrations

    Temperature

    Comparisons were made between CTD temperatures and SBE 35 readings. Mean offsets of -0.00050°C (primary) and -0.00094°C (secondary) were determined. Both of these are smaller than the target accuracy for temperature of 0.001°C, hence no corrections for temperature were applied.

    Conductivity

    A comparison made between CTD conductivity sensors and discrete salinity samples bottle salinities. Dependence of the secondary conductivity cells on pressure was found and corrections applied accordingly:

    • Primary conductivity: 0.9104e-3
    • Initial secondary conductivity: 2.8923*10-3 - (0.7285*10-6 * pressure)
    • Replacement secondary conductivity: 0.6940*10-3 - (0.6751*10-6 * pressure)

    Further information on the processing can be found in the cruise report.


Project Information

Ocean Regulation of Climate by Heat and Carbon Sequestration and Transports (ORCHESTRA)

The Ocean Regulation of Climate by Heat and Carbon Sequestration and Transports (ORCHESTRA) is a £8.4 million, five year (2016-2021) research programme funded by the Natural Environment Research Council (NERC). The aim of the research is to to advance the understanding of, and capability to predict, the Southern Ocean's impact on climate change via its uptake and storage of heat and carbon. The programme will significantly reduce uncertainties concerning how this uptake and storage by the ocean influences global climate, by conducting a series of unique fieldwork campaigns and innovative model developments.

Background

ORCHESTRA represents the first fully-unified activity by NERC institutes to address these challenges, and will draw in national and international partners to provide community coherence, and to build a legacy in knowledge and capability that will transcend the timescale of the programme itself.

It brings together science teams from six UK research institutions to investigate the role that the Southern Ocean plays in our changing climate and atmospheric carbon draw-down. It is led by British Antarctic Survey, in partnership with National Oceanography Centre, British Geological Survey, Plymouth Marine Laboratory, the Centre for Polar Observation and Modelling and the Sea Mammal Research Unit.

The oceans around Antarctica play a critical a key role in drawing down and storing large amounts of carbon and vast quantities of heat from from the atmosphere. Due to its remoteness and harsh environment, the Southern Ocean is the world's biggest data desert, and one of the hardest places to get right in climate models. The ORCHESTRA programme will make unique and important new measurements in the Southern Ocean using a range of techniques, including use of the world-class UK research vessel fleet, and deployments of innovative underwater robots. The new understanding obtained will guide key improvements to the current generation of computer models, and will enhance greatly our ability to predict climate into the future.

The scope of the programme includes interaction of the Southern Ocean with the atmosphere, exchange between the upper ocean mixed layer and the interior and exchange between the Southern Ocean and the global ocean.

Further details are available on the ORCHESTRA page.

Participants

Six different organisations are directly involved in research for ORCHESTRA. These institutions are:

  • British Antarctic Survey (BAS)
  • National Oceanography Centre (NOC)
  • Plymouth Marine Laboratory (PML)
  • British Geological Survey (BGS)
  • Centre for Polar Observation and Modelling (CPOM)
  • Sea Mammal Research Unit (SMRU)

GO-SHIP are a third party organisation that, although not directly involved with the programme, will conduct ship based observations that will also be used by ORCHESTRA.

Research details

Three Work Packages have been funded by the ORCHESTRA programme. These are described in brief below:

  • Work Package 1: Interaction of the Southern ocean with the atmosphere
    WP1 will use new observations of surface fluxes and their controlling parameters in order to better constrain the exchanges of heat and carbon loss across the surface of the Southern Ocean.

  • Work Package 2: Exchange between the upper ocean mixed layer and the interior.
    This work package will combine observationally-derived data and model simulations to determine and understand the exchanges between the ocean mixed layer and its interior.

  • Work Package 3: Exchange between the Southern Ocean and the global ocean .
    This WP will use budget analyses of the hydrographic/tracer sections to diagnose the three-dimensional velocity field of the waters entering, leaving and recirculating within the Southern Atlantic sector of the Southern ocean.

  • Fieldwork and data collection

    The campaign consists of 12 core cruises on board the NERC research vessels RRS James Clark Ross and RRS James Cook and will include hydrographic/tracer sections conducted across Drake Passage (SR1b), the northern Weddell Sea/Scotia Sea (A23), the northern rim of the Weddell Gyre (ANDREXII) and across the South Atlantic (24S). Section I6S will be performed by GO-SHIP Project Partners. Measurements will include temperature, salinity, dissolved oxygen, velocity, dissolved inorganic carbon, total alkalinity, inorganic nutrients, oxygen and carbon isotopes, and underway meteorological and surface ocean observations including pCO2.

    Tags will be deployed on 30 Weddel seals and these will provide temperature and salinity profiles that can be used alongside the Argo data.

    Autonomous underwater ocean gliders will conduct multi-month missions and will deliver data on ocean stratification, heat content, mixed layer depth and turbulent mixing over the upper 1 km, with previously-unobtainable temporal resolution. These gliders will be deployed in the Weddell Gyre and the ACC.

    Field campaigns with the MASIN meteorological aircrafts will be conducted flying out of Rothera and Halley research stations and the Falkland Islands. These campaigns will deliver information on key variables relating to air-sea fluxes (surface and air temperature, wind, humidity, atmospheric CO2, radiation, turbulent fluxes of heat, momentum and CO2), in different sea ice conditions and oceanic regimes.

    Eart Observation datasets will be used to inform the programme on the properties of the ocean, sea ice and atmosphere and on interactions between them.

    A cluster of 6 deep ocean moorings in the Orkney Passage will collect year round series of AABW temperatre and transport. This work connects to the NERC funded project Dynamics of the Orkney Passage Outflow (DYNOPO).

    The UK Earth System model (UKESM) and underlying physical model will be used to conduct analyses of heat and carbon uptake and transport by the Southern Ocean and their links to wider climate on decadal timescales.

    An eddy-resolving (1/12°) sector model of the ocean south of 30°S with 75 vertical levels, will be built using the NEMO model coupled to the Los Alamos sea ice (CICE) model. The improvements on the ocean boundary layer will be based from the results from the NERC-funded OSMOSIS project and the inclusion of tides.

    20-5 year runs of an adjoint model will be conducted to determine how key forcings and model states affect the uptake and subduction of heat and carbon by the ocean.


Data Activity or Cruise Information

Cruise

Cruise Name JR15006
Departure Date 2016-03-31
Arrival Date 2016-04-26
Principal Scientist(s)Andrew J S Meijers (British Antarctic Survey)
Ship RRS James Clark Ross

Complete Cruise Metadata Report is available here


Fixed Station Information


No Fixed Station Information held for the Series


BODC Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
Blank Unqualified
< Below detection limit
> In excess of quoted value
A Taxonomic flag for affinis (aff.)
B Beginning of CTD Down/Up Cast
C Taxonomic flag for confer (cf.)
D Thermometric depth
E End of CTD Down/Up Cast
G Non-taxonomic biological characteristic uncertainty
H Extrapolated value
I Taxonomic flag for single species (sp.)
K Improbable value - unknown quality control source
L Improbable value - originator's quality control
M Improbable value - BODC quality control
N Null value
O Improbable value - user quality control
P Trace/calm
Q Indeterminate
R Replacement value
S Estimated value
T Interpolated value
U Uncalibrated
W Control value
X Excessive difference

SeaDataNet Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
0 no quality control
1 good value
2 probably good value
3 probably bad value
4 bad value
5 changed value
6 value below detection
7 value in excess
8 interpolated value
9 missing value
A value phenomenon uncertain
B nominal value
Q value below limit of quantification