Search the data

Metadata Report for BODC Series Reference Number 1839911


Metadata Summary

Data Description

Data Category Currents -subsurface Eulerian
Instrument Type
NameCategories
Teledyne RDI Workhorse Sentinel-300 ADCP  current profilers
Instrument Mounting lowered unmanned submersible
Originating Country United Kingdom
Originator Dr Yvonne Firing
Originating Organization National Oceanography Centre, Southampton
Processing Status banked
Online delivery of data Download available - Ocean Data View (ODV) format
Project(s) ORCHESTRA
 

Data Identifiers

Originator's Identifier 018DL002
BODC Series Reference 1839911
 

Time Co-ordinates(UT)

Start Time (yyyy-mm-dd hh:mm) 2017-12-03 03:56
End Time (yyyy-mm-dd hh:mm) -
Nominal Cycle Interval 5.0 metres
 

Spatial Co-ordinates

Latitude 63.79987 S ( 63° 48.0' S )
Longitude 66.49948 W ( 66° 30.0' W )
Positional Uncertainty 0.0 to 0.01 n.miles
Minimum Sensor or Sampling Depth 5.0 m
Maximum Sensor or Sampling Depth 1115.0 m
Minimum Sensor or Sampling Height 2049.5 m
Maximum Sensor or Sampling Height 3159.5 m
Sea Floor Depth 3164.5 m
Sea Floor Depth Source GEBCO1401
Sensor or Sampling Distribution Variable common depth - All sensors are grouped effectively at the same depth, but this depth varies significantly during the series
Sensor or Sampling Depth Datum Instantaneous - Depth measured below water line or instantaneous water body surface
Sea Floor Depth Datum Chart reference - Depth extracted from available chart
 

Parameters

BODC CODERankUnitsTitle
ACYCAA011DimensionlessSequence number
ADEPZZ011MetresDepth (spatial coordinate) relative to water surface in the water body
LCEWLW011Centimetres per secondEastward velocity of water current (Eulerian measurement) in the water body by lowered acoustic doppler current profiler (ADCP)
LCNSLW011Centimetres per secondNorthward velocity of water current (Eulerian measurement) in the water body by lowered acoustic doppler current profiler (ADCP)

Definition of Rank

  • Rank 1 is a one-dimensional parameter
  • Rank 2 is a two-dimensional parameter
  • Rank 0 is a one-dimensional parameter describing the second dimension of a two-dimensional parameter (e.g. bin depths for moored ADCP data)

Problem Reports

No Problem Report Found in the Database

LADCP data from cruise JR17001 Quality Report

Screening and Quality Control

During BODC quality control, data were screened using in house visualisation software. The data were screened where any obvious outliers were looked at in closer detail but it was not deemed that any points were anomalous.


Data Access Policy

Open Data supplied by Natural Environment Research Council (NERC)

You must always use the following attribution statement to acknowledge the source of the information: "Contains data supplied by Natural Environment Research Council."


Narrative Documents

RD Instruments 300kHz Workhorse Sentinel Acoustic Doppler Current Profiler

Specifications

Water velocity measurements relative to the ADCP
Maximum velocity 10 m.s-1
Standard deviation 130, 45, 25, 12, 5 mm.s-1 for depth cell sizes of 1, 2, 4, 8, 16 m, respectively
Minimum time between pings 0.07 s
Maximum profiling range* 110, 120, 130, 150, 165 m for depth cell sizes of 1, 2, 4, 8, 16 m, respectively
Minimum range to start of first depth cell 3 m
Number of depth cells 1 - 128 cells
Depth cell size 1 - 16 cm
Echo Intensity measurements
Uncertainty ± 1.5 dB
Sampling Uses same depth cells and time intervals as velocity
Sensors
Water level resolution 0.25 m
Water level accuracy ± 5 m over 0-200 m depth
Temperature range -5°C to + 45°C
Temperature uncertainty ± 0.4°C
Tilt range ± 20°
Tilt uncertainty ± 2°
Compass uncertainty ± 5° at 60° magnetic dip angle
Compass maximum tilt 20°
Physical and Environmental
Maximum depth 200 m
Operating temperature -5°C to 60°C
Storage Temperature -5°C to 80°C

The manufacturer's specification document can be found here

Instrument Description for JR17001 CTD

CTD Unit and Auxiliary Sensors

The CTD unit comprised a Sea-Bird Electronics (SBE) 9plus underwater unit, an SBE 11 plus deck unit, a 24-way SBE 32 carousel and 24 Niskin bottles; all of which were mounted on a stainless steel 24-way CTD frame. Attached to the CTD were two SBE 3P temperature sensors, two SBE 4C conductivity sensors, one SBE 43 dissolved oxygen sensor, one QCP2350 PAR sensor, one CTG Aquatracka MKIII fluorometer, one WetLabs C-Star transmissometer, one Tritech Altimeter, one SBE35 temperature sensor and a RDI LADCP.

Sensor unit Model Serial number Full specification
CTD underwater unit SBE 9plus 0707 SBE 9plus
CTD deck unit SBE 11plus 0458 -
Carousel SBE 32 - 24 Position Pylon 0636 SBE 32
Temperature sensor SBE 3P 2705 SBE 03P
Temperature sensor SBE 3P 5042 SBE 03P
Conductivity sensor SBE 4C 3488 SBE 04C
Conductivity sensor SBE 4C 2248* SBE 04C
Dissolved oxygen sensor SBE 43 0242 SBE 43
Altimeter Tritech PA-200 10127 Tritech PA-200
Irradiance sensor Biospherical QCP2350 PAR 70636 Biospherical QCP PAR sensor
Fluorometer Chelsea MKIII Aquatracka 09-7324-001 Chelsea MKII Aquatracka
Transmissometer WetLabs C-Star 396 WetLabs C-Star
Temperature sensor (Independent) SBE 35 0024 SBE 35
LADCP RDI Workhorse 300 kHz 15060** LADCP

* The secondary conductivity sensor was replaced during the cruise due to the output of the first sensor being spikey. The serial number of the first sensor was 2248 and the serial number of the second sensor was 2255.

** The LADCP was replaced during the cruise due to excessive file fragmentation. The LADCP was replaced by RDI Workhorse 300 kHz serial number 14897.

BODC Data Processing of LADCP data from cruise JR17001

Data Processing

The LADCP data from cruise JR17001 were processed and submitted to BODC in .mat format. The files were subsequently archived and transferred to BODC internal format using standard BODC procedures. The variables provided in the files were mapped to BODC parameter codes as follows:

Originator's Variable Originator's Units BODC Parameter Code BODC Units Comment
dr.z m ADEPZZ01 m -
dr.u m s-1 LCEWLW01 cm s-1 Conversion of *100 applied.
dr.v m s-1 LCNSLW01 cm s-1 Conversion of *100 applied.

Screening

Post transfer analysis and crosschecks were applied according to BODC procedures. This involved the screening of data using BODC's in house visualisation software where any anomalous data were flagged but not removed.

Originator Data Processing of LADCP data from cruise JR17001

Sampling Strategy

A total of 44 LADCP casts were performed during JR17001 with 34 of these casts completed as part of the ORCHESTRA programme and the remaining 10 casts completed for the NERC-CONICYT ICEBERGS programme. 20 of the ORCHESTRA casts surveyed the SR1b line. A 330 kHz Workhorse lowered acoustic Doppler current profiler (LADCP) was fitted in a downward looking position on the CTD rosette for all casts. The LADCP was configured to sample in 25 x 8 m bins and data were collected in beam coordinates and rotated to earth coordinates during data processing.

Data Processing

The LADCP was connected to a charger and to the CTD computer via a serial cable. Using the CTD computer, programming prior to each station was completed and the data were downloaded after each cast. This was done using BBTalk. The downloaded data were then copied to the network data drive and processed with the LDEO IX software. During processing, the ship's navigation file and CTD pressure streams were incorporated to constrain the solution for earth-relative velocity from the measured instrument-relative velocity.

Further information on the LADCP processing can be found in sections 12.2.5 and 15.3. b) of the cruise report.

Data Submission

Data from 42 of the 44 casts were submitted to BODC.


Project Information

Ocean Regulation of Climate by Heat and Carbon Sequestration and Transports (ORCHESTRA)

The Ocean Regulation of Climate by Heat and Carbon Sequestration and Transports (ORCHESTRA) is a £8.4 million, five year (2016-2021) research programme funded by the Natural Environment Research Council (NERC). The aim of the research is to to advance the understanding of, and capability to predict, the Southern Ocean's impact on climate change via its uptake and storage of heat and carbon. The programme will significantly reduce uncertainties concerning how this uptake and storage by the ocean influences global climate, by conducting a series of unique fieldwork campaigns and innovative model developments.

Background

ORCHESTRA represents the first fully-unified activity by NERC institutes to address these challenges, and will draw in national and international partners to provide community coherence, and to build a legacy in knowledge and capability that will transcend the timescale of the programme itself.

It brings together science teams from six UK research institutions to investigate the role that the Southern Ocean plays in our changing climate and atmospheric carbon draw-down. It is led by British Antarctic Survey, in partnership with National Oceanography Centre, British Geological Survey, Plymouth Marine Laboratory, the Centre for Polar Observation and Modelling and the Sea Mammal Research Unit.

The oceans around Antarctica play a critical a key role in drawing down and storing large amounts of carbon and vast quantities of heat from from the atmosphere. Due to its remoteness and harsh environment, the Southern Ocean is the world's biggest data desert, and one of the hardest places to get right in climate models. The ORCHESTRA programme will make unique and important new measurements in the Southern Ocean using a range of techniques, including use of the world-class UK research vessel fleet, and deployments of innovative underwater robots. The new understanding obtained will guide key improvements to the current generation of computer models, and will enhance greatly our ability to predict climate into the future.

The scope of the programme includes interaction of the Southern Ocean with the atmosphere, exchange between the upper ocean mixed layer and the interior and exchange between the Southern Ocean and the global ocean.

Further details are available on the ORCHESTRA page.

Participants

Six different organisations are directly involved in research for ORCHESTRA. These institutions are:

  • British Antarctic Survey (BAS)
  • National Oceanography Centre (NOC)
  • Plymouth Marine Laboratory (PML)
  • British Geological Survey (BGS)
  • Centre for Polar Observation and Modelling (CPOM)
  • Sea Mammal Research Unit (SMRU)

GO-SHIP are a third party organisation that, although not directly involved with the programme, will conduct ship based observations that will also be used by ORCHESTRA.

Research details

Three Work Packages have been funded by the ORCHESTRA programme. These are described in brief below:

  • Work Package 1: Interaction of the Southern ocean with the atmosphere
    WP1 will use new observations of surface fluxes and their controlling parameters in order to better constrain the exchanges of heat and carbon loss across the surface of the Southern Ocean.

  • Work Package 2: Exchange between the upper ocean mixed layer and the interior.
    This work package will combine observationally-derived data and model simulations to determine and understand the exchanges between the ocean mixed layer and its interior.

  • Work Package 3: Exchange between the Southern Ocean and the global ocean .
    This WP will use budget analyses of the hydrographic/tracer sections to diagnose the three-dimensional velocity field of the waters entering, leaving and recirculating within the Southern Atlantic sector of the Southern ocean.

  • Fieldwork and data collection

    The campaign consists of 12 core cruises on board the NERC research vessels RRS James Clark Ross and RRS James Cook and will include hydrographic/tracer sections conducted across Drake Passage (SR1b), the northern Weddell Sea/Scotia Sea (A23), the northern rim of the Weddell Gyre (ANDREXII) and across the South Atlantic (24S). Section I6S will be performed by GO-SHIP Project Partners. Measurements will include temperature, salinity, dissolved oxygen, velocity, dissolved inorganic carbon, total alkalinity, inorganic nutrients, oxygen and carbon isotopes, and underway meteorological and surface ocean observations including pCO2.

    Tags will be deployed on 30 Weddel seals and these will provide temperature and salinity profiles that can be used alongside the Argo data.

    Autonomous underwater ocean gliders will conduct multi-month missions and will deliver data on ocean stratification, heat content, mixed layer depth and turbulent mixing over the upper 1 km, with previously-unobtainable temporal resolution. These gliders will be deployed in the Weddell Gyre and the ACC.

    Field campaigns with the MASIN meteorological aircrafts will be conducted flying out of Rothera and Halley research stations and the Falkland Islands. These campaigns will deliver information on key variables relating to air-sea fluxes (surface and air temperature, wind, humidity, atmospheric CO2, radiation, turbulent fluxes of heat, momentum and CO2), in different sea ice conditions and oceanic regimes.

    Eart Observation datasets will be used to inform the programme on the properties of the ocean, sea ice and atmosphere and on interactions between them.

    A cluster of 6 deep ocean moorings in the Orkney Passage will collect year round series of AABW temperatre and transport. This work connects to the NERC funded project Dynamics of the Orkney Passage Outflow (DYNOPO).

    The UK Earth System model (UKESM) and underlying physical model will be used to conduct analyses of heat and carbon uptake and transport by the Southern Ocean and their links to wider climate on decadal timescales.

    An eddy-resolving (1/12°) sector model of the ocean south of 30°S with 75 vertical levels, will be built using the NEMO model coupled to the Los Alamos sea ice (CICE) model. The improvements on the ocean boundary layer will be based from the results from the NERC-funded OSMOSIS project and the inclusion of tides.

    20-5 year runs of an adjoint model will be conducted to determine how key forcings and model states affect the uptake and subduction of heat and carbon by the ocean.


Data Activity or Cruise Information

Cruise

Cruise Name JR17001 (ORCHESTRA)
Departure Date 2017-11-21
Arrival Date 2017-12-21
Principal Scientist(s)David Barnes (British Antarctic Survey), J Alexander Brearley (British Antarctic Survey), Yvonne L Firing (National Oceanography Centre, Southampton)
Ship RRS James Clark Ross

Complete Cruise Metadata Report is available here


Fixed Station Information


No Fixed Station Information held for the Series


BODC Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
Blank Unqualified
< Below detection limit
> In excess of quoted value
A Taxonomic flag for affinis (aff.)
B Beginning of CTD Down/Up Cast
C Taxonomic flag for confer (cf.)
D Thermometric depth
E End of CTD Down/Up Cast
G Non-taxonomic biological characteristic uncertainty
H Extrapolated value
I Taxonomic flag for single species (sp.)
K Improbable value - unknown quality control source
L Improbable value - originator's quality control
M Improbable value - BODC quality control
N Null value
O Improbable value - user quality control
P Trace/calm
Q Indeterminate
R Replacement value
S Estimated value
T Interpolated value
U Uncalibrated
W Control value
X Excessive difference

SeaDataNet Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
0 no quality control
1 good value
2 probably good value
3 probably bad value
4 bad value
5 changed value
6 value below detection
7 value in excess
8 interpolated value
9 missing value
A value phenomenon uncertain
B nominal value
Q value below limit of quantification