Search the data

Metadata Report for BODC Series Reference Number 1921510


Metadata Summary

Data Description

Data Category Meteorology -unspecified
Instrument Type
NameCategories
Vaisala HMP temperature and humidity sensor  meteorological packages
Gill Windsonic anemometer  anemometers
Kipp and Zonen CM6B pyranometer  radiometers
Skye Instruments SKE510 PAR energy sensor  radiometers
Vaisala PTB110 barometer  meteorological packages
Instrument Mounting research vessel
Originating Country United Kingdom
Originator Dr David Smeed
Originating Organization National Oceanography Centre, Southampton
Processing Status banked
Online delivery of data Download available - Ocean Data View (ODV) format
Project(s) RAPIDMOC
RAPID-AMOC
 

Data Identifiers

Originator's Identifier JC145_PROD_MET
BODC Series Reference 1921510
 

Time Co-ordinates(UT)

Start Time (yyyy-mm-dd hh:mm) 2017-02-28 07:00
End Time (yyyy-mm-dd hh:mm) 2017-04-08 00:00
Nominal Cycle Interval 60.0 seconds
 

Spatial Co-ordinates

Southernmost Latitude 23.67000 N ( 23° 40.2' N )
Northernmost Latitude 28.73483 N ( 28° 44.1' N )
Westernmost Longitude 77.35867 W ( 77° 21.5' W )
Easternmost Longitude 13.50883 W ( 13° 30.5' W )
Positional Uncertainty 0.0 to 0.01 n.miles
Minimum Sensor or Sampling Depth -19.4 m
Maximum Sensor or Sampling Depth -17.1 m
Minimum Sensor or Sampling Height -
Maximum Sensor or Sampling Height -
Sea Floor Depth -
Sea Floor Depth Source -
Sensor or Sampling Distribution Scattered at fixed depths - The sensors are scattered with respect to depth but each remains effectively at the same depth for the duration of the series
Sensor or Sampling Depth Datum Approximate - Depth is only approximate
Sea Floor Depth Datum -
 

Parameters

BODC CODERankUnitsTitle
AADYAA011DaysDate (time from 00:00 01/01/1760 to 00:00 UT on day)
AAFDZZ011DaysTime (time between 00:00 UT and timestamp)
ALATGP011DegreesLatitude north relative to WGS84 by unspecified GPS system
ALONGP011DegreesLongitude east relative to WGS84 by unspecified GPS system
CAPHTU011MillibarsPressure (measured variable) exerted by the atmosphere by barometer and expressed at measurement altitude
CDTAZZ011Degrees CelsiusTemperature of the atmosphere by thermometer
CRELZZ011PercentRelative humidity of the atmosphere
CSLRRP011Watts per square metreDownwelling vector irradiance as energy of electromagnetic radiation (solar (300-3000nm) wavelengths) in the atmosphere by port-mounted pyranometer
CSLRRS011Watts per square metreDownwelling vector irradiance as energy of electromagnetic radiation (solar (300-3000nm) wavelengths) in the atmosphere by starboard-mounted pyranometer
CVLTRP011VoltsRaw signal (voltage) of instrument output by port-mounted pyranometer
CVLTRS011VoltsRaw signal (voltage) of instrument output by starboard-mounted pyranometer
DVLTRPSD1VoltsRaw signal (voltage) of instrument output by port-mounted PAR cosine-collector radiometer
DVLTRSSD1VoltsRaw signal (voltage) of instrument output by starboard-mounted PAR cosine-collector radiometer
DWIRRPSD1Watts per square metreDownwelling vector irradiance as energy of electromagnetic radiation (PAR wavelengths) in the atmosphere by port-mounted cosine-collector radiometer
DWIRRSSD1Watts per square metreDownwelling vector irradiance as energy of electromagnetic radiation (PAR wavelengths) in the atmosphere by starboard-mounted cosine-collector radiometer
ERWDSS011DegreesDirection (from) of wind relative to moving platform and heading {wind direction} in the atmosphere by in-situ anemometer
ERWSSS011Metres per secondSpeed of wind relative to moving platform and heading {wind speed} in the atmosphere by in-situ anemometer
EWDASS011Degrees TrueDirection (from) of wind relative to True North {wind direction} in the atmosphere by in-situ anemometer
EWSBSS011Metres per secondSpeed of wind {wind speed} in the atmosphere by in-situ anemometer

Definition of Rank

  • Rank 1 is a one-dimensional parameter
  • Rank 2 is a two-dimensional parameter
  • Rank 0 is a one-dimensional parameter describing the second dimension of a two-dimensional parameter (e.g. bin depths for moored ADCP data)

Problem Reports

Meteorology

The Port TIR (CVLTRP01) sensor appears to be faulty. There is an offset between both sensors and the trend of the Port TIR sensor does not always follow the starboard TIR sensor. The most apparent difference can be seen at the daily maxium. The Port TIR channel was flagged accordingly.

Meteorology

The Port TIR (CSLRRP01) sensor appears to be faulty. There is an offset between both sensors and the trend of the Port TIR sensor does not always follow the starboard TIR sensor. The most apparent difference can be seen at the daily maxium. The entire Port TIR channel was flagged accordingly.

RRS James Cook JC145 Meteorology Quality Control Report

Wind sensors

The wind channels looks good overall. There were some periods where spiking is observed as wind speed is seen to accelerate in tandem with the wind changing direction rapidly. In addition, wind shielding is observed at various points throughout the dataset. These occurrences were flagged accordingly.

Light sensors

The port TIR channel appears to be faulty but the other light channels look good overall. The light channels show occasional shading on both the port and the starboard sensors. There are some drop-outs within the dataset. This is possibly due to sensor malfunctions. These were automatically flagged.

Air temperature, relative humidity and atmospheric pressure

The temperature, pressure and humidity readings are within their expected ranges. There are some drop-outs within the dataset. This is possibly due to sensor malfunctions. These were automatically flagged.


Data Access Policy

Open Data supplied by Natural Environment Research Council (NERC)

You must always use the following attribution statement to acknowledge the source of the information: "Contains data supplied by Natural Environment Research Council."


Narrative Documents

Gill Instruments Windsonic Anemometer

The Gill Windsonic is a 2-axis ultrasonic wind sensor that monitors wind speed and direction using four transducers. The time taken for an ultrasonic pulse to travel from the North to the South transducers is measured and compared with the time for a pulse to travel from South to North. Travel times between the East and West transducers are similarly compared. The wind speed and direction are calculated from the differences in the times of flight along each axis. This calculation is independent of environmental factors such as temperature.

Specifications

Ultrasonic output rate 0.25, 0.5, 1, 2 or 4 Hz
Operating Temperature -35 to 70°C
Operating Humidity < 5 to 100% RH
Anemometer start up time < 5 s
Wind speed
Range 0 to 60 m s-1
Accuracy ± 2% at 2 m s-1
Resolution 0.01 m s-1
Response time 0.25 s
Threshold 0.01 m s-1
Wind direction
Range 0 to 359°
Accuracy ± 3° at 12 m s-1
Resolution
Response time 0.25 s

Further details can be found in the manufacturer's specification sheet.

Kipp and Zonen Pyranometer Model CM6B

The CM6B pyranometer is intended for routine global solar radiation measurement research on a level surface. The CM6B features a sixty-four thermocouple junction (series connected) sensing element. The sensing element is coated with a highly stable carbon based non-organic coating, which delivers excellent spectral absorption and long term stability characteristics. The sensing element is housed under two concentric fitting Schott K5 glass domes.

Specifications

Dimensions (W x H) 150.0 mm x 91.5 mm
Weight 850 grams
Operating Temperature -40°C to +80°C
Spectral Range 305 - 2800 nm
(50% points)
Sensitivity 9 -15 µV/W/m2
Impedance (nominal) 70 - 100 ohm
Response Time (95%) 30 sec
Non-linearity < ± 1.2% (<1000 W/m2)
Temperature dependence of sensitivity < ± 2% (-10 to +40°C)
Zero-offset due to temperature changes < ± 4 W/m2 at 5 K/h temperature change

RRS James Cook JC145 Meteorology Instrumentation

Instrumentation

The meteorological suite of sensors was located on the forecastle deck, at approximately 17.1 m above sea level. The anemometer orientation was 0° on the bow.

Manufacturer Model Serial number Last manufacturer's calibration date Comments
Skye SKE 510 28559 11/09/2015 Port
Skye SKE 510 28560 11/09/2015 Starboard
Kipp and Zonen CM6B 047462 01/06/2015 Port
Kipp and Zonen CM6B 047463 15/06/2015 Starboard
Gill Windsonic 064537 N/A No calibration required
Vaisala Humidity and Temperature Probe HMP 45 E105502 18/07/2016 No calibration required
Vaisala PTB110 Barometer Air pres J0710001 12/04/2016 No calibration required
BODC image

Skye Instruments PAR Energy Sensor Model SKE 510

The SKE 510 is suitable for measuring photosynthetically active radiation (PAR) from natural or artificial light sources. The sensor is fully waterproof and guaranteed submersible to 4m depth, and indoor versions are also available.

The instrument uses a blue-enhanced planar diffused silicon detector to measure energy (in W m-2) over the 400-700 nm waveband. It has a cosine-corrected head and a square spectral response. The sensor can operate over a temperature range of -35 to 70 °C and a humidity range of 0-100% RH.

Specifications

Sensitivity (current) 1.5µA or 100 W m-2
Sensitivity (voltage) 1mV or 100 W m-2
Working Range 0-5000 W m-2
Linearity error 0.2%
Absolute calibration error typ. less than 3%
5% max
Response time - voltage output 10 ns
Cosine error 3%
Azimuth error less than 1%
Temperature co-efficient ±0.1% per °C
Internal resistance - voltage output c. 300 ohms
Longterm stability ±2%
Material Dupont 'Delrin'
Dimensions 34 mm diameter
38mm height
Cable 2 core screened
7 - 2 - 2C
Sensor Passband 400 - 700 nm
Detector Silicon photocell
Filters Glass type and/or metal interference

Vaisala PTB110 barometer

An industrial, analog barometer which uses a silicon capacitive sensor (BAROCAP). The sensor produces either frequency or voltage output and is mountable on a (35 mm wide) DIN rail.

Operating ranges (1 hPa = 1 mbar)

Pressure ranges 500 ... 1100 hPa
600 ... 1100 hPa
800 ... 1100 hPa
800 ... 1060 hPa
600 ... 1060 hPa
Temperature range -40 ... +60 °C (-40 ... +140 °F)
Humidity range non-condensing

General

Output voltage 0 ... 2.5 VDC
0 ... 5 VDC
Output frequency 500 ... 1100 Hz
Resolution 0.1 hPa

Accuracy

Linearity* ±0.25 hPa
Hysteresis* ±0.03 hPa
Repeatability* ±0.03 hPa
Pressure calibration uncertainty** ±0.15 hPa
Accuracy at +20 °C*** ±0.3 hPa
Total accuracy at:
+15 ... +25 °C (+59 ... +77 °F)
0 ... +40 °C (+32 ... +104 °F)
-20 ... +45 °C (-4 ... +113 °F)
-40 ... +60 °C (-40 ... +140 °F)
±0.3 hPa
±0.6 hPa
±1.0 hPa
±1.5 hPa

* Defined as ±2 standard deviation limits of end-point non-linearity, hysteresis error or repeatability error.
** Defined as ±2 standard deviation limits of inaccuracy of the working standard including traceability to NIST.
*** Defined as the root sum of the squares (RSS) of end-point non-linearity, hysteresis error, repeatability error and calibration uncertainty at room temperature when using voltage output.

More detailed information can be found in the manufacturer's data sheet and user's guide.

Vaisala Temperature and Relative Humidity HMP Sensors

A family of sensors and instruments (sensors plus integral displays or loggers) for the measurement of air temperature and relative humidity. All are based on a probe containing a patent (HUMICAP) capacitive thin polymer film capacitanece humidity sensor and a Pt100 platinum resistance thermometer. The probes are available with a wide range of packaging, cabling and interface options all of which have designations of the form HMPnn or HMPnnn such as HMP45 and HMP230. Vaisala sensors are incorporated into weather stations and marketed by Campbell Scientific.

All versions operate at up to 100% humidity. Operating temperature ranges vary between models, allowing users to select the version best suited to their requirements.

Further details can be found in the manufacturer's specification sheets for the HMP 45 series, HMP 70 series and HMP 230 series.

RRS James Cook JC145 Meteorology Data Processing Procedures

Originator's Data Processing

The data were logged by the TECHSAS (TECHnical and Scientific sensors Acquisition System) data logging system into daily NetCDF files. The daily TECHSAS NetCDF Meteorology files were converted to MSTAR by the originator. These were provided to BODC and used for BODC processing. Data were additionally logged into the RVS Level-C format files which have been archived at BODC.

Files delivered to BODC

Filename Content description Format Interval Start date/time (UTC) End date/time (UTC) Comments
surfmet_jc145_trueav.nc Ship speed, Relative wind speed, Relative wind direction, True wind speed, True wind direction MSTAR 1 min. 28-Feb-2017 08:30:00 07-Apr-2017 00:00:00  
met_light_jc145_01.nc Air pressure, PAR, TIR MSTAR 1 sec. 28-Feb-2017 08:30:00 06-Apr-2017 23:59:58  

BODC Data Processing

The data were reformatted to BODC internal format using standard banking procedures. Data were averaged at 60 second intervals. The following table shows how variables within the file were mapped to appropriate BODC parameter codes:

yyyymmdd-000000-MET-SURFMET.SURFMETv2

Originator's variable Originator's units Description BODC Code BODC Units Unit conversion Comments
relwind_dirship (direction towards) degrees Relative wind direction (direction from) ERWDSS01 degrees none relwind_dirship>180 = relwind_dirship-180; relwind_dirship>180 = relwind_dirship+180
relwind_spd m/s Relative wind speed ERWSSS01 m/s none  
airtemp degree celsius Air temperature CDTAZZ01 degrees celsius none  
humid 100*Pa/Pa Relative air humidity CRELZZ01 % none  
time days since 1899-12-30 00:00:00 UTC Acquisition time       Not transferred

yyyymmdd-000000-Light-SURFMET.SURFMETv2

Originator's variable Originator's units Description BODC Code BODC Units Unit conversion Comments
ptir dimensionless Port total irradiance CVLTRP01 Volts /100000  
stir dimensionless Starboard total irradiance CVLTRS01 Volts /100000  

ppar

dimensionless Port side PAR sensor DVLTRPSD Volts /100000  
spar dimensionless Port side starboard sensor DVLTRSSD Volts /100000  
pres mbar Atmospheric pressure CAPHTU01 millibar none  
time days since 1899-12-30 00:00:00 UTC Acquisition time       Not transferred

All data expressed at measurement altitude.

Calibrations

Field Calibrations

No field calibrations were applied to the data at BODC.

Manufacturers Calibrations

PAR/TIR

The following manufacturer's calibrations were applied to the PAR and TIR light sensors using:

y (W m -2 ) = (a x 10 6 )/b

where 'a' is the raw data in volts and 'b' is the calibration offset (µV per W m -2 ) as shown below.

Sensor Serial no location offset (µV per W m -2 )
PAR 28560 Port 9.799
PAR 28559 Starboard 10.77
TIR 047462 Starboard 11.87
TIR 047463 Port 10.62

All the reformatted data were visualised using the in-house EDSERPLO software. Suspect data were marked by adding an appropriate quality control flag.

Absolute wind speed and direction

Relative wind speed and direction were corrected for the ship's heading and speed using the POS MV gyro heading, ship velocities (calculated at BODC from the main positional channels) and an anemometer orientation of 0° on the bow, thus obtaining the BODC derived absolute wind speed and direction parameters, with codes EWSBSS01 and EWDASS01 respectively.

Air pressure

A manufacturer's calibration was not applied to the barometer because there was no significant offset reported on the certified calibration certificate.

Air temperature and humidity

Manufacturer's calibrations were not applied to the temperature and humidity probe because there were no significant offsets reported on the certified calibration certificate.


Project Information

Monitoring the Meridional Overturning Circulation at 26.5N (RAPIDMOC)

Scientific Rationale

There is a northward transport of heat throughout the Atlantic, reaching a maximum of 1.3PW (25% of the global heat flux) around 24.5°N. The heat transport is a balance of the northward flux of a warm Gulf Stream, and a southward flux of cooler thermocline and cold North Atlantic Deep Water that is known as the meridional overturning circulation (MOC). As a consequence of the MOC northwest Europe enjoys a mild climate for its latitude: however abrupt rearrangement of the Atlantic Circulation has been shown in climate models and in palaeoclimate records to be responsible for a cooling of European climate of between 5-10°C. A principal objective of the RAPID programme is the development of a pre-operational prototype system that will continuously observe the strength and structure of the MOC. An initiative has been formed to fulfill this objective and consists of three interlinked projects:

  • A mooring array spanning the Atlantic at 26.5°N to measure the southward branch of the MOC (Hirschi et al., 2003 and Baehr et al., 2004).
  • Additional moorings deployed in the western boundary along 26.5°N (by Prof. Bill Johns, University of Miami) to resolve transport in the Deep Western Boundary Current (Bryden et al., 2005). These moorings allow surface-to-bottom density profiles along the western boundary, Mid-Atlantic Ridge, and eastern boundary to be observed. As a result, the transatlantic pressure gradient can be continuously measured.
  • Monitoring of the northward branch of the MOC using submarine telephone cables in the Florida Straits (Baringer et al., 2001) led by Dr Molly Baringer (NOAA/AOML/PHOD).

The entire monitoring array system created by the three projects will be recovered and redeployed annually until 2008 under RAPID funding. From 2008 until 2014 the array will continue to be serviced annually under RAPID-WATCH funding.

The array will be focussed on three regions, the Eastern Boundary (EB), the Mid Atlantic Ridge (MAR) and the Western Boundary (WB). The geographical extent of these regions are as follows:

  • Eastern Boundary (EB) array defined as a box with the south-east corner at 23.5°N, 25.5°W and the north-west corner at 29.0°N, 12.0°W
  • Mid Atlantic Ridge (MAR) array defined as a box with the south-east corner at 23.0°N, 52.1°W and the north-west corner at 26.5°N, 40.0°W
  • Western Boundary (WB) array defined as a box with the south-east corner at 26.0°N, 77.5°W and the north-west corner at 27.5°N, 69.5°W

References

Baehr, J., Hirschi, J., Beismann, J.O. and Marotzke, J. (2004) Monitoring the meridional overturning circulation in the North Atlantic: A model-based array design study. Journal of Marine Research, Volume 62, No 3, pp 283-312.

Baringer, M.O'N. and Larsen, J.C. (2001) Sixteen years of Florida Current transport at 27N Geophysical Research Letters, Volume 28, No 16, pp3179-3182

Bryden, H.L., Johns, W.E. and Saunders, P.M. (2005) Deep Western Boundary Current East of Abaco: Mean structure and transport. Journal of Marine Research, Volume 63, No 1, pp 35-57.

Hirschi, J., Baehr, J., Marotzke J., Stark J., Cunningham S.A. and Beismann J.O. (2003) A monitoring design for the Atlantic meridional overturning circulation. Geophysical Research Letters, Volume 30, No 7, article number 1413 (DOI 10.1029/2002GL016776)


RAPID Climate Change - Atlantic Meridional Overturning Circulation (RAPID-AMOC)

RAPID-AMOC is an £8.4 million, 7 year (2013-2020) research programme that builds on the success of the Natural Environment Research Council's (NERC) RAPID and RAPID-WATCH programmes and will deliver a 16 year long time series of the Atlantic Meridional Overturning Circulation (AMOC).

Background

The Atlantic Meridional Overturning Circulation (AMOC) is a critical element in the energy balance of the global climate system. The AMOC consists of a near-surface, warm northward flow of ocean water, compensated by a colder southward return flow at depth. This heat is transferred from the ocean to the atmosphere at mid-latitudes, with a substantial impact on climate and, in particular, on that of the UK and northwest Europe.

Observing and understanding changes in the AMOC is critically important for identifying the mechanisms of decadal climate variability and change, and for interannual-to-decadal climate prediction. This includes predicting changes in the location, frequency and intensity of Atlantic hurricanes, storms in the North Atlantic and over Europe, shifts in tropical and European precipitation patterns, and the response of sea level to changing radiative forcing. Sustained observations are also critical for assessing the possibility of abrupt change in the AMOC that are known to occur in palaeoclimatic records.

Since 2004 the NERC RAPID and RAPID-WATCH programmes, in partnership with the National Science Foundation and the National Oceanic and Atmospheric Administration in the US, have supported an observing system to continuously measure the AMOC at 26.5°N via a trans-basin array of moored instruments. This measures the basin-wide strength and vertical structure of the AMOC, and its components.

Observations from the array have already revolutionised understanding of AMOC variability and documented its variability on seasonal to interannual timescales. The first few years of observations, demonstrated the feasibility of AMOC measurement, provided new insights into the seasonal cycle, and allowed apparent trends in previous historical 'snapshots' to be seen in the context of natural variability. RAPID-AMOC will extend the AMOC time series.

Objective

RAPID-AMOC's overall objective is to determine the variability of the AMOC, and its links to climate and to the ocean carbon sink, on interannual-to-decadal time scales

This will be achieved by the continued support of the monitoring array and supporting the use of the data in three key areas:

  • Application of array data for improved ocean state estimation;
  • Use of array data to understand the role of the AMOC in climate variability and predictability;
  • Addition of biogeochemical sensors to the array and use to constrain biogeochemical fluxes.

Three projects have been funded to address the objectives of RAPID-AMOC:

  • Reanalysis of the AMOC
  • DYNamics and predictability of the Atlantic Meridional Overturning and Climate (DYNAMOC)
  • Atlantic BiogeoChemical fluxes (ABC Fluxes)

Data Activity or Cruise Information

Cruise

Cruise Name JC145
Departure Date 2017-02-28
Arrival Date 2017-04-08
Principal Scientist(s)David Smeed (National Oceanography Centre, Southampton)
Ship RRS James Cook

Complete Cruise Metadata Report is available here


Fixed Station Information


No Fixed Station Information held for the Series


BODC Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
Blank Unqualified
< Below detection limit
> In excess of quoted value
A Taxonomic flag for affinis (aff.)
B Beginning of CTD Down/Up Cast
C Taxonomic flag for confer (cf.)
D Thermometric depth
E End of CTD Down/Up Cast
G Non-taxonomic biological characteristic uncertainty
H Extrapolated value
I Taxonomic flag for single species (sp.)
K Improbable value - unknown quality control source
L Improbable value - originator's quality control
M Improbable value - BODC quality control
N Null value
O Improbable value - user quality control
P Trace/calm
Q Indeterminate
R Replacement value
S Estimated value
T Interpolated value
U Uncalibrated
W Control value
X Excessive difference

SeaDataNet Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
0 no quality control
1 good value
2 probably good value
3 probably bad value
4 bad value
5 changed value
6 value below detection
7 value in excess
8 interpolated value
9 missing value
A value phenomenon uncertain
B nominal value
Q value below limit of quantification