Search the data

Metadata Report for BODC Series Reference Number 2023043


Metadata Summary

Data Description

Data Category Surface temp/sal
Instrument Type
NameCategories
WET Labs {Sea-Bird WETLabs} WETStar fluorometer  fluorometers
WET Labs {Sea-Bird WETLabs} C-Star transmissometer  transmissometers
Sea-Bird SBE 45 MicroTSG thermosalinograph  thermosalinographs; water temperature sensor; salinity sensor
Sea-Bird SBE 38 thermometer  water temperature sensor
Instrument Mounting research vessel
Originating Country United Kingdom
Originator Unknown
Originating Organization British Oceanographic Data Centre, Liverpool
Processing Status banked
Online delivery of data Download available - Ocean Data View (ODV) format
Project(s) CUSTARD
 

Data Identifiers

Originator's Identifier DY112_MCALR_PPARXD_ICAL_SURF
BODC Series Reference 2023043
 

Time Co-ordinates(UT)

Start Time (yyyy-mm-dd hh:mm) 2020-01-16 09:00
End Time (yyyy-mm-dd hh:mm) 2020-01-24 22:02
Nominal Cycle Interval 60.0 seconds
 

Spatial Co-ordinates

Southernmost Latitude 54.43100 S ( 54° 25.9' S )
Northernmost Latitude 52.65350 S ( 52° 39.2' S )
Westernmost Longitude 89.22267 W ( 89° 13.4' W )
Easternmost Longitude 70.77817 W ( 70° 46.7' W )
Positional Uncertainty 0.0 to 0.01 n.miles
Minimum Sensor or Sampling Depth 5.5 m
Maximum Sensor or Sampling Depth 5.5 m
Minimum Sensor or Sampling Height -
Maximum Sensor or Sampling Height -
Sea Floor Depth -
Sea Floor Depth Source -
Sensor or Sampling Distribution Fixed common depth - All sensors are grouped effectively at the same depth which is effectively fixed for the duration of the series
Sensor or Sampling Depth Datum Approximate - Depth is only approximate
Sea Floor Depth Datum -
 

Parameters

BODC CODERankUnitsTitle
AADYAA011DaysDate (time from 00:00 01/01/1760 to 00:00 UT on day)
AAFDZZ011DaysTime (time between 00:00 UT and timestamp)
ACYCAA011DimensionlessSequence number
ALATGP011DegreesLatitude north relative to WGS84 by unspecified GPS system
ALONGP011DegreesLongitude east relative to WGS84 by unspecified GPS system
ATTNDR011per metreAttenuation (red light wavelength) per unit length of the water body by 25cm path length red light transmissometer
CNDCSG011Siemens per metreElectrical conductivity of the water body by thermosalinograph
CPHLUMTF1Milligrams per cubic metreConcentration of chlorophyll-a {chl-a CAS 479-61-8} per unit volume of the water body [particulate >unknown phase] by through-flow fluorometer plumbed into non-toxic supply and manufacturer's calibration applied
FVLTWS011VoltsRaw signal (voltage) of instrument output by linear-response chlorophyll fluorometer
INFLTF011Litres per minuteFlow rate through instrument
POPTDR011PercentTransmittance (red light wavelength) per 25cm of the water body by 25cm path length red light transmissometer
PSALSG011DimensionlessPractical salinity of the water body by thermosalinograph and computation using UNESCO 1983 algorithm and calibration against independent measurements
PSALSU011DimensionlessPractical salinity of the water body by thermosalinograph and computation using UNESCO 1983 algorithm and NO calibration against independent measurements
TEMPHG011Degrees CelsiusTemperature of the water body by thermosalinograph hull sensor and verification against independent measurements
TEMPHU011Degrees CelsiusTemperature of the water body by thermosalinograph hull sensor and NO verification against independent measurements
TMESSG011Degrees CelsiusTemperature of electrical conductivity measurement by thermosalinograph
TVLTDR011VoltsRaw signal (voltage) of instrument output by 25cm path length red light transmissometer

Definition of Rank

  • Rank 1 is a one-dimensional parameter
  • Rank 2 is a two-dimensional parameter
  • Rank 0 is a one-dimensional parameter describing the second dimension of a two-dimensional parameter (e.g. bin depths for moored ADCP data)

Problem Reports

No Problem Report Found in the Database

RRS Discovery Surface Hydrography Quality Control Report

Sea Surface Temperature

The remote underway sea surface temperature data readings have been found to display a consistent variable offset when compared to CTD temperature readings at the same depth. As this is a general occurance, the remote underway temperature data should be used with caution if they have not been calibrated against in situ CTD temperature values.

RRS Discovery cruise DY112 surface hydrography quality control report

Conductivity

Non-toxic flow minimal until 18/01/2020 ~1700. (BODC assessment)

Salinity

Non-toxic flow minimal until 18/01/2020 ~1700. (BODC assessment)

The salinity calibration obtained post-station (from 22/01/2020 00:00:00) was calculated with only two sample points. Users should use the calibration with caution.

Housing temperature

Non-toxic flow minimal until 18/01/2020 ~1700. (BODC assessment)

Remote temperature

Non-toxic flow minimal until 18/01/2020 ~1700. Half degree increases in SST were observed on 20/01/2020 ~12000. It was unclear if these were valid and thus not flagged as bad. (BODC assessment)

The sea surface temprature calibration applied was obtained from the previous cruise where high bias was observed. Users should use the calibration with caution.

Fluorometer

Non-toxic flow minimal until 18/01/2020 ~1700. (BODC assessment)

Transmissometer

Non-toxic flow minimal until 18/01/2020 ~1700.
Readings affected by bubbles until 19/01/2020 ~2330. (BODC assessment)


Data Access Policy

Open Data supplied by Natural Environment Research Council (NERC)

You must always use the following attribution statement to acknowledge the source of the information: "Contains data supplied by Natural Environment Research Council."


Narrative Documents

SeaBird Digital Oceanographic Thermometer SBE38

The SBE38 is an ultra-stable thermistor that can be integrated as a remote temperature sensor with an SBE21 Thermosalinograph or an SBE 45 Micro TSG, or as a secondary temperature sensor with an SBE 16 plus, 16plus-IM, 16plus V2, 16plus-IM V2 or 19plus V2 SEACAT CTD.

Temperature is determined by applying an AC excitation to reference resistances and an ultra-stable aged thermistor. The reference resistor is a hermetically sealed VISHAY. AC excitation and ratiometric comparison using a common processing channel removes measurement errors due to parasitic thermocouples, offset voltages, leakage currents and gain errors.

The SBE38 can operate in polled sampling, where it takes one sample and transmits the data, or in continuous sampling.

Specifications

Depth rating up to 10500 m
Temperature range -5 to 35°C
Initial accuracy ± 0.001°C
Resolution 0.00025°C
Stability 0.001°C in 6 months
Response time 500 ms
Self-heating error < 200 µK

Further details can be found in the manufacturer's specification sheet.

WET Labs WETStar Fluorometers

WET Labs WETStar fluorometers are miniature flow-through fluorometers, designed to measure relative concentrations of chlorophyll, CDOM, uranine, rhodamineWT dye, or phycoerythrin pigment in a sample of water. The sample is pumped through a quartz tube, and excited by a light source tuned to the fluorescence characteristics of the object substance. A photodiode detector measures the portion of the excitation energy that is emitted as fluorescence.

Specifications

By model:

  Chlorophyll WETStar CDOM WETStar Uranine WETStar Rhodamine WETStar Phycoerythrin WETStar
Excitation wavelength 460 nm 370 nm 485 nm 470 nm 525 nm
Emission wavelength 695 nm 460 nm 530 nm 590 nm 575 nm
Sensitivity 0.03 µg l-1 0.100 ppb QSD 1 µg l-1 - -
Range 0.03-75 µg l-1 0-100 ppb; 0-250 ppb 0-4000 µg l-1 - -

All models:

Temperature range 0-30°C
Depth rating 600 m
Response time 0.17 s analogue; 0.125 s digital
Output 0-5 VDC analogue; 0-4095 counts digital

Further details can be found in the manufacturer's specification sheet, and in the instrument manual.

WETLabs C-Star transmissometer

This instrument is designed to measure beam transmittance by submersion or with an optional flow tube for pumped applications. It can be used in profiles, moorings or as part of an underway system.

Two models are available, a 25 cm pathlength, which can be built in aluminum or co-polymer, and a 10 cm pathlength with a plastic housing. Both have an analog output, but a digital model is also available.

This instrument has been updated to provide a high resolution RS232 data output, while maintaining the same design and characteristics.

Specifications

Pathlength 10 or 25 cm
Wavelength 370, 470, 530 or 660 nm
Bandwidth

~ 20 nm for wavelengths of 470, 530 and 660 nm

~ 10 to 12 nm for a wavelength of 370 nm

Temperature error 0.02 % full scale °C-1
Temperature range 0 to 30°C
Rated depth

600 m (plastic housing)

6000 m (aluminum housing)

Further details are available in the manufacturer's specification sheet or user guide.

RRS Discovery cruise DY112 surface hydrography instrumentation

Instrumentation

The sea surface hydrographical suite of sensors was fed by the pumped-seawater, non-toxic supply. The depth of the seawater intake was at 5.5 m.

The following surface hydrology sensors were fitted:

Make/model Serial number Last calibration date Orientation Status Comments
WetLabs WS3S WS3S-351P 05-Aug-2019      
WetLabs CST CST-1852PR 19-Mar-2018      
Sea-Bird Scientific SBE 45 4548881-0230 27/06/2019   Calibrated by sensor firmware 1yr of operation within 2yr of cal date - Expires 04/09/2020
Sea-Bird Scientific SBE 38 3854115-0487 26-Jul-2019   Calibrated by sensor firmware  

SeaBird MicroTSG Thermosalinograph SBE 45

The SBE45 MicroTSG is an externally powered instrument designed for shipboard measurement of temperature and conductivity of pumped near-surface water samples. The instrument can also compute salinity and sound velocity internally.

The MicroTSG comprises a platinum-electrode glass conductivity cell and a stable, pressure-protected thermistor temperature sensor. It also contains an RS-232 port for appending the output of a remote temperature sensor, allowing for direct measurement of sea surface temperature.

The instrument can operate in Polled, Autonomous and Serial Line Sync sampling modes:

  • Polled sampling: the instrument takes one sample on command
  • Autonomous sampling: the instrument samples at preprogrammed intervals and does not enter quiescence (sleep) state between samples
  • Serial Line Sync: a pulse on the serial line causes the instrument to wake up, sample and re-enter quiescent state automatically

Specifications

  Conductivity Temperature Salinity
Range 0 to 7 Sm-1 -5 to 35°C  
Initial accuracy 0.0003 Sm-1 0.002°C 0.005 (typical)
Resolution 0.00001 Sm-1 0.0001°C 0.0002 (typical)
Typical stability (per month) 0.0003 Sm-1 0.0002°C 0.003 (typical)

Further details can be found in the manufacturer's specification sheet.

RRS Discovery cruise DY112 surface hydrography data processing procedures

Originator's Data Processing

The data were logged by the TECHSAS (TECHnical and Scientific sensors Acquisition System) system into daily NetCDF files. The TECHSAS system is used as the main data logging system on NMF-SS operated reserach vessels. The daily TECHSAS NetCDF files provided to BODC were used for BODC processing. Data were additionally logged into the RVS Level-C format files which have been archived at BODC.

Files delivered to BODC

Filename Function Format Resolution Start time End time Comments
*-Surf-*-SM_*.SURFMETv3 Fluo, trans, flow TECHSAS 1 Hz 14-Jan-2020 14:59:33 24-Jan-2020 22:01:32  
*-SBE45-SBE45_*.TSG TSG TECHSAS 1 Hz 14-Jan-2020 14:59:33 22-Jan-2020 13:35:54  

BODC Data Processing

The files were reformatted to BODC internal format using standard data banking procedures. All files were averaged to 60 second intervals. The following table shows how the variables within the files were mapped to appropriate BODC parameter codes:

Source file Originator's variable Units Description BODC code BODC unit Converion Comments
*-SBE45-SBE45_*.TSG temp_h deg C Temperature (housing) TMESSG01 deg C    
*-SBE45-SBE45_*.TSG cond S/m Conductivity CNDCSG01 S/m    
*-SBE45-SBE45_*.TSG salin PSU Practical salinity PSALSU01 PSU    
*-SBE45-SBE45_*.TSG temp_r deg C Temperature (remote) TEMPHU01 deg C    
*-Surf-*-SM_*.SURFMETv3 fluo V Raw fluoresence output FVLTWS01 V    
*-Surf-*-SM_*.SURFMETv3 trans V Raw transmissometer output TVLtdR01 V    
*-Surf-*-SM_*.SURFMETv3 flow1 l/min Water flow through system INFLTF01 l/min    
      Beam transmission POPtdR01 %   Derived at BODC
      Beam attenuation ATTNDR01 m-1   Derived at BODC
      Chlorophyll fluorescence CPHLUMTF ug/L   Derived at BODC

Manufacturers Calibrations

Transmissometer

The transmissometer voltage channel was converted to beam transmission ( beamtrans ) and beam attenuation ( atten ) as follows:

beamtrans [%] = ([ volts - Vdark ] / [ Vref - Vdark ])100

atten [per m] = (-1/ pathlength ) ln( beamtrans /100)

where Vdark = 0.004 V, Vref = 4.7 V and pathlength = 0.25 m.

Fluorometer

The fluorescence voltage channel was converted to engineering units ( chla ) using the following calibration:

chla [µg/L]= SF ( volts - CWO )

where SF = 11.4 µg/L/V and CWO = 0.045 V.

Processing

All the reformatted data were visualised using the in-house EDSERPLO software. Suspect data were marked by adding an appropriate quality control flag.

Field Calibrations

Sea surface salinity

Sea surface salinity (SSS) was calibrated against independent salinity bottle samples extracted from the non-toxic pumped-seawater supply during the cruise. Offsets (n = 14) between bottle salinity and corresponding SSS measurements were calculated, revealing the bias in salinity measurements varied during the cruise:

BODC image

Following discussions with the originator the calibration for salinity was split into 3 sections: pre-station, on-station and post-station. Two outliers were removed and the following calibrations were obtained:

Pre-station (to 19/01/2020 23:59:59)

BODC image

(a + (b * day)) + old salinity

where a = -0.3117, b = 0.01866 and day = decimal day since 01/01/2020 00:00:00 (P = 0.01, n = 4, adjR2 = 0.9672).

On-station (20/01/2020 00:00:00 to 21/01/2020 23:59:59)

BODC image

(a + (b * sal)) + old salinity

where a = -19.8426, b = 1.5823 and sal = old (uncalibrated) salinity (P = 0.002, n = 6, adjR2 = 0.9081).

After-station (From 22/01/2020 00:00:00)

BODC image

old salinity + a

where a = mean offset of 0.0117 (n = 2, +/- 0.0004 S.E.).

Sea surface temperature

No CTD casts were available to investigate the temperature bias. Following discussions with the originator, the bias observed on the preceding cruise (DY111) was applied:

old temperature + a

where a = offset of -0.3 (+/- 0.15). See DY111 cruise report p53.


Project Information

Carbon Uptake and Seasonal Traits of Antarctic Remineralisation Depth (CUSTARD)

Carbon Uptake and Seasonal Traits of Antarctic Remineralisation Depth (CUSTARD) is a £1.8 million, four-year (2018-2022) research project funded by the Natural Environment Research Council (NERC).

The main aim of the CUSTARD project is to quantify the seasonal drivers of carbon fluxes in a region of the Southern Ocean upper limb, and estimate how long different quantities of carbon are kept out of the atmosphere based on the water flow routes at the observed remineralisation depths. Please visit the CUSTARD web page for more information

CUSTARD is one of three projects funded as part of the Role of the Southern Ocean in the Earth System (RoSES) programme, also known as the Southern Ocean programme. Please see the RoSES project document for more information on the wider programme and the research projects associated with it.

Background

The upper limb of the Antarctic Circumpolar Current (ACC) represents an important junction in the marine carbon cycle, as the fate of carbon fixed by surface phytoplankton will differ according to how deep it penetrates before being remineralised. If shallow remineralisation occurs, carbon will follow the upper limb circulation and upwell further north, escaping into the atmosphere within decades. On the other hand, deep remineralisation will result in carbon entering the lower limb circulation, with the potential of being retained in the ocean for hundreds of years. Seasonality in plankton dynamics play an important role in remineralisation depth, and CUSTARD aims to resolve all factors contributing to the carbon export out of the region.

Participants

Six different UK-based organisations are directly involved in research for CUSTARD:

  • National Oceanography Centre (NOC)
  • NERC British Antarctic Survey (BAS)
  • University of Southampton
  • University of Oxford
  • Plymouth University
  • University of East Anglia (UEA)

CUSTARD collaborates closely with the US Ocean Observatories Initiative (OOI) program through sharing of instruments and platforms at and around the Global Southern Ocean Array. OOI is funded by the National Science Foundation (NSF) and is managed by the Woods Hole Oceanographic Institution. Rutgers University maintains the cyberinfrastructure component, working alongside CUSTARD scientists in the handling and distribution of shared observational data.

Research details

Four Work Packages have been funded by the CUSTARD project, each addressing a separate project objective within the region of study in the south eastern Pacific ocean. These are described briefly below:

  • Work Package 1: Obtain an accurate picture of the seasonal air-sea flux and macronutrient drawdown.
    This work package aims at determining the magnitude and variability of air-sea CO2 fluxes and their physical and biogeochemical drivers. High-resolution carbon measurements in the water column, CO2 flux estimates and daily resolved nitrate and silicate observations are combined to better understand the link between seasonal changes in CO2 fluxes and biological variability.

  • Work Package 2: Quantify the link between iron and silicate availability and remineralisation depth.
    This work package investigates the annual cycle of phytoplankton dynamics, net production and export of organic material in conjunction with iron availability.

  • Work Package 3: Observationally determine the seasonal cycle in remineralisation depth.
    This work package assesses remineralisation depth and its variability using marine snow catchers deployed during the process cruise, and backscatter measurements carried out year-round by gliders.

  • Work Package 4: Examine the link between seasonality and remineralisation depth and the trajectory of carbon from the surface out of the upper limb.
    This work package aims to ingest all CUSTARD observational data into models to determine whether seasonal variability in phytoplankton composition is reflected in changes in remineralisation depth, which in turn leads to seasonal variability in the fate of organic carbon leaving the Southern Ocean via the upper limb.

Fieldwork and data collection

All the observational data from the project is collected at and south of the Ocean Observatories Initiative (OOI) Global Southern Ocean Array, located south-west of Chile. Data collection activities span from November 2018 to January 2020, and include three cruises, four glider missions, and one mooring.

Cruises

All cruises depart from and return to Punta Arenas (Chile). Cruise activities include deployments and recovery of gliders and a mooring, Conductivity, Temperature and Depth (CTD), trace metal clean GoFlo bottle sampling, Red Camera Frame, Marine Snow Catcher and Underwater Vision Profiler deployments, as well as laboratory incubations with sea water samples. See cruise details below:

Cruise identifier Research ship Cruise dates Comments
DY096 RRS Discovery November - December 2018 Deployment cruise
DY111 RRS Discovery December 2019 - January 2020 Process cruise
DY112 RRS Discovery January 2020 Mooring recovery cruise
Gliders

Two Slocum 1000 MARS gliders (Pancake and Churchill) are deployed from DY096, to collect data continuously for one year until recovery on DY111. The gliders are mounted with CTD sensors, an optode, a fluorometer, and twin backscatter sensors. Pancake failed and its mission ended early in February 2019.

One Rutgers University glider is deployed from DY111, to collect data until recovery at the end of the same cruise. The glider is owned by Rutgers University and the data is shared with CUSTARD. It carries CTD sensors, an optode, a fluorometer, a backscatter sensor and a particle size analyser.

Mooring

Deployment of Global Surface Mooring GS01SUMO-00004 (SUMO-4) during DY096, to take continuous measurements for approximately one year until recovery during DY112. Its location is roughly 54 28 S, 89 02 W. This is an OOI mooring provided and deployed by WHOI, and adapted to integrate NOC lab-on-chip nitrate and silicate sensors.

Contacts

Dr. Adrian Marin (National Oceanography Centre, UK) - Lead Principal Investigator and lead of Work Package 4
Dr. Dorothee Bakker (University of East Anglia, UK) - Lead of Work Package 1
Prof. Mark Moore (University of Southampton, UK) - Lead of Work Package 2
Dr. Stephanie Henson (National Oceanography Centre / University of Southampton, UK) - Lead of Work Package 3


Data Activity or Cruise Information

Cruise

Cruise Name DY112
Departure Date 2020-01-16
Arrival Date 2020-01-25
Principal Scientist(s)Sheri White (Woods Hole Oceanographic Institution Department of Applied Ocean Physics and Engineering)
Ship RRS Discovery

Complete Cruise Metadata Report is available here


Fixed Station Information


No Fixed Station Information held for the Series


BODC Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
Blank Unqualified
< Below detection limit
> In excess of quoted value
A Taxonomic flag for affinis (aff.)
B Beginning of CTD Down/Up Cast
C Taxonomic flag for confer (cf.)
D Thermometric depth
E End of CTD Down/Up Cast
G Non-taxonomic biological characteristic uncertainty
H Extrapolated value
I Taxonomic flag for single species (sp.)
K Improbable value - unknown quality control source
L Improbable value - originator's quality control
M Improbable value - BODC quality control
N Null value
O Improbable value - user quality control
P Trace/calm
Q Indeterminate
R Replacement value
S Estimated value
T Interpolated value
U Uncalibrated
W Control value
X Excessive difference

SeaDataNet Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
0 no quality control
1 good value
2 probably good value
3 probably bad value
4 bad value
5 changed value
6 value below detection
7 value in excess
8 interpolated value
9 missing value
A value phenomenon uncertain
B nominal value
Q value below limit of quantification