Metadata Report for BODC Series Reference Number 438978


Metadata Summary

Data Description

Data Category Currents -subsurface Eulerian
Instrument Type
NameCategories
Aanderaa RCM 7/8 Recording Current Meter  current meters
Instrument Mounting subsurface mooring
Originating Country United Kingdom
Originator -
Originating Organization Proudman Oceanographic Laboratory (now National Oceanography Centre, Liverpool)
Processing Status banked
Project(s) Land Ocean Interaction Study (LOIS)
LOIS Shelf Edge Study (LOIS - SES)
 

Data Identifiers

Originator's Identifier as11813.778
BODC Series Reference 438978
 

Time Co-ordinates(UT)

Start Time (yyyy-mm-dd hh:mm) 1996-07-12 12:30
End Time (yyyy-mm-dd hh:mm) 1996-07-24 09:59
Nominal Cycle Interval 60.0 seconds
 

Spatial Co-ordinates

Latitude 56.46180 N ( 56° 27.7' N )
Longitude 8.19100 W ( 8° 11.5' W )
Positional Uncertainty 0.1 to 0.5 n.miles
Minimum Sensor Depth 85.0 m
Maximum Sensor Depth 85.0 m
Minimum Sensor Height 64.0 m
Maximum Sensor Height 64.0 m
Sea Floor Depth 149.0 m
Sensor Distribution Fixed common depth - All sensors are grouped effectively at the same depth which is effectively fixed for the duration of the series
Sensor Depth Datum Sea floor reference - Depth measured as a height above sea floor but converted into a depth relative to the sea surface according to the same datum as used for sea floor depth (applicable to instrument depths not bathymetric depths)
Sea Floor Depth Datum Instantaneous - Depth measured below water line or instantaneous water body surface
 

Parameters

BODC CODE Rank Units Short Title Title
AADYAA01 1 Days Date(Loch_Day) Date (time from 00:00 01/01/1760 to 00:00 UT on day)
AAFDZZ01 1 Days Time(Day_Fract) Time (time between 00:00 UT and timestamp)
CNDCPR01 1 Siemens per metre InSituCond Electrical conductivity of the water body by in-situ conductivity cell
LCDAEL01 1 Degrees True CurrDir Current direction (Eulerian) in the water body by in-situ current meter and correction to true North
LCSAEL01 1 Centimetres per second CurrSpd_CM Current speed (Eulerian) in the water body by in-situ current meter
PREXPR01 1 Decibars MeasPress_MW Pressure (measured variable) exerted by the water body by semi-fixed in-situ pressure sensor and corrected to read zero at sea level
PSALPR01 1 Dimensionless P_sal Practical salinity of the water body by conductivity cell and computation using UNESCO 1983 algorithm
TEMPPR01 1 Degrees Celsius Temp Temperature of the water body
 

Definition of Rank

  • Rank 1 is a one-dimensional parameter
  • Rank 2 is a two-dimensional parameter
  • Rank 0 is a one-dimensional parameter describing the second dimension of a two-dimensional parameter (e.g. bin depths for moored ADCP data)

Problem Reports

The current data are noisy and should be used with care.


Data Access Policy

Open Data supplied by Natural Environment Research Council (NERC)

You must always use the following attribution statement to acknowledge the source of the information: "Contains data supplied by Natural Environment Research Council."


Narrative Documents

Aanderaa Recording Current Meter Model 7/8

Manufacturer's specifications: recording unit height 49.5cm (RCM8 52.0cm), diameter 12.8cm, vane size 48.5x50.0cm. Meter is designed for depths down to 2000m (RCM8 6000m). It incorporates a spindle which is shackled to the mooring line. The meter is attached to the spindle through a gimbal mounting which permits a maximum 27° deviation of the spindle from the vertical, the meter still remaining horizontal.

Meter comprises :

  1. Paddle wheel rotor magnetically coupled to an electronic counter

  2. Vane, which aligns instrument with current flow, has a balance weight ensuring static balance and tail fins to ensure dynamic balance in flows up to 250cm/s.

  3. Magnetic compass (needle is clamped to potentiometer ring) - direction recorded with 0.35° resolution, 5° accuracy for speeds 5 to 100cm/s, 7.5° accuracy for remaining speeds within 2.5 to 200cm/s range.

  4. Quartz clock, accuracy better than 2 sec/day within temperature range 0 to 20°C.

  5. Thermistor (temperature sensor), standard range -2.46 to 21.48°C (max on high range 36.04°C), accuracy 0.05°C, resolution 0.1 per cent of range, 63 per cent response time 12sec.

  6. Inductive cell conductivity sensor (optional), range 0 to 70mmho/cm standard resolution 0.1 per cent of range.

  7. Silicon piezoresistive bridge, standard range 0 to 3000 psi (RCM8 to 9000 psi), resolution 0.1% of range.

  8. Self balancing potentiometer which converts the output from each sensor into a 10 bit binary number for storage on magnetic tape.

  9. Associated electronics.

A built-in clock triggers the instrument at preset intervals and up to six channels are sampled in sequence. Channel 1 is a fixed reference reading for control purposes and data identification. Channels 2, 3 and 4 represent measurement of temperature, conductivity and pressure. Channels 5 and 6 represent the VECTOR AVERAGED current speed and direction since the previous triggering of the instrument. The number of rotor revolutions and the direction is sampled every 12 seconds and broken into North and East components. Successive components are added and recorded as speed and direction. For recording intervals longer than 10 minutes, speed and direction are sampled 1/50th of recording interval.

It has become common practice in some laboratories to deploy these meters as temperature and conductivity loggers without current measuring capabilities.

The following link will provide the manufacturer specifications:

Manufacturer specifications

Aanderaa Current Meter Data Processing

Data Originator's Processing

The following procedures are carried out before the data were supplied to BODC.

Data were downloaded from the instrument logger, and factory calibrations were applied to the current speed channel, and the pressure, conductivity and temperature channels when fitted. Where available, laboratory calibrations of the current direction channels were used; factory formulae were used in their absence. Where no form factor was known for the conductivity sensor, a value of 2.8 was used.

Please note (concerns vector averaged current data): The current data are averaged by the logger over the sampling interval, whereas the pressure, temperature and conductivity data are single point measurements taken at the end of the interval. The data originator has moved the time stamps to the mid-point of the vector averaging sampling interval for all channels without interpolation.

BODC Data Processing and Quality Control

Where pressure sensors were fitted: the data record was compared with the pressure computed from the water depth on deployment and rig geometry. The time series was visually screened for evidence of rig movement (e.g. trawling) and excessive leaning (perhaps due to strong currents).

Where temperature sensors were fitted: the data record was compared with calibrated CTD data taken in the vicinity and checked for agreement within a few tenths of a degree Celsius. Obvious spikes were flagged. Periods of excessively noisy data were noted.

Where conductivity sensors were fitted: salinity (PSS-78) was computed from in-situ temperature and conductivity and a nominal pressure computed from the water depth on deployment and rig geometry. Obvious spikes were flagged.

BODC Current Meter Screening

BODC screen both the series header qualifying information and the parameter values in the data cycles themselves.

Header information is inspected for:

Documents are written by BODC highlighting irregularities which cannot be resolved.

Data cycles are inspected using time series plots of all parameters. Currents are additionally inspected using vector scatter plots and time series plots of North and East velocity components. These presentations undergo intrinsic and extrinsic screening to detect infeasible values within the data cycles themselves and inconsistencies as seen when comparing characteristics of adjacent data sets displaced with respect to depth, position or time. Values suspected of being of non- oceanographic origin may be tagged with the BODC flag denoting suspect value.

The following types of irregularity, each relying on visual detection in the time series plot, are amongst those which may be flagged as suspect:

If a large percentage of the data is affected by irregularities, deemed abnormal, then instead of flagging the individual suspect values, a caution may be documented. Likewise documents will highlight irregularities seen in the current vector scatter plots such as incongruous centre holes, evidence of mooring 'knock-down', abnormal asymmetry in tidally dominated records or gaps as when a range of speeds or directions go unregistered due to meter malfunction.

The term 'knock-down' refers to the situation when the 'drag' exerted on a mooring at high current speeds may cause instruments to tilt beyond the angle at which they are intended to operate. At this point the efficiency of the current sensors to accurately record the flow is reduced.

Inconsistencies between the characteristics of the data set and those of its neighbours are sought, and where necessary, documented. This covers inconsistencies in the following:

This intrinsic and extrinsic screening of the parameter values seeks to confirm the qualifying information and the source laboratory's comments on the series. In screening and collating information, every care is taken to ensure that errors of BODC making are not introduced.

Data Processing Notes

Instrument recorded pressure appears not to accurately reflect instrument depth. Therefore salinity has been computed using a nominal pressure derived from the rig configuration and water depth on deployment.


Project Information

Land Ocean Interaction Study (LOIS)

Introduction

The Land Ocean Interaction Study (LOIS) was a Community Research Project of the Natural Environment Research Council (NERC). The broad aim of LOIS was to gain an understanding of, and an ability to predict, the nature of environmental change in the coastal zone around the UK through an integrated study from the river catchments through to the shelf break.

LOIS was a collaborative, multidisciplinary study undertaken by scientists from NERC research laboratories and Higher Education institutions. The LOIS project was managed from NERC's Plymouth Marine Laboratory.

The project ran for six years from April 1992 until April 1998 with a further modelling and synthesis phase beginning in April 1998 and ending in April 2000.

Project Structure

LOIS consisted of the following components:

Marine Fieldwork

Marine field data were collected between September 1993 and September 1997 as part of RACS(C) and SES. The RACS data were collected throughout this period from the estuaries and coastal waters of the UK North Sea coast from Great Yarmouth to the Tweed. The SES data were collected between March 1995 and September 1996 from the Hebridean slope. Both the RACS and SES data sets incorporate a broad spectrum of measurements collected using moored instruments and research vessel surveys.


LOIS Shelf Edge Study (LOIS - SES)

Introduction

SES was a component of the NERC Land Ocean Interaction Study (LOIS) Community Research Programme that made intensive measurements from the shelf break in the region known as the Hebridean Slope from March 1995 to September 1996.

Scientific Rationale

SES was devoted to the study of interactions between the shelf seas and the open ocean. The specific objectives of the project were:

Fieldwork

The SES fieldwork was focussed on a box enclosing two sections across the shelf break at 56.4-56.5 °N and 56.6-56.7 °N. Moored instrument arrays were maintained throughout the experiment at stations with water depths ranging from 140 m to 1500 m, although there were heavy losses due to the intensive fishing activity in the area. The moorings included meteorological buoys, current meters, transmissometers, fluorometers, nutrient analysers (but these never returned any usable data), thermistor chains, colour sensors and sediment traps.

The moorings were serviced by research cruises at approximately three-monthly intervals. In addition to the mooring work this cruises undertook intensive CTD, water bottle and benthic surveys with cruise durations of up to 6 weeks (3 legs of approximately 2 weeks each).

Moored instrument activities associated with SES comprised current measurements in the North Channel in 1993 and the Tiree Passage from 1995-1996. These provided boundary conditions for SES modelling activities.

Additional data were provided through cruises undertaken by the Defence Evaluation and Research Agency (DERA) in a co-operative programme known as SESAME.


Data Activity or Cruise Information

Data Activity

Start Date (yyyy-mm-dd) 1996-07-12
End Date (yyyy-mm-dd) 1996-07-24
Organization Undertaking ActivityProudman Oceanographic Laboratory (now National Oceanography Centre, Liverpool)
Country of OrganizationUnited Kingdom
Originator's Data Activity IdentifierPOLRIG#778
Platform Categorysubsurface mooring

Proudman Oceanographic Laboratory Moored Instrument Rig #778

This rig was deployed as part of the LOIS Shelf-Edge Study at site S140E.

Rig position: 56° 27.50'N 08° 11.07'W
Deployed: 12 Jul 1996 12:19
from RRS Challenger (cruise CH128A)
Recovered: 24 Jul 1996 10:50
onto RRS Challenger (cruise CH128B)

The instruments were anchored by 500kg of chain and kept erect by a 40" diameter buoy attached 3m below the sea surface.

Instruments deployed on the rig

Height above
Sea Bed
Instrument
144m S4 current meter (#7920)
143m MINLOG Temperature Probe (#2417)
142m to 65m 76m thermistor chain (#1289)
64m Aanderaa current meter (#11813)

Other Series linked to this Data Activity - 444449 477375 477387 442492

Cruise

Cruise Name CH128A
Departure Date 1996-07-10
Arrival Date 1996-07-26
Principal Scientist(s)John H Simpson (University of Wales, Bangor School of Ocean Sciences)
Ship RRS Challenger

Complete Cruise Metadata Report is available here


Fixed Station Information

Fixed Station Information

Station NameLOIS(SES) S140E
CategoryOffshore location
Latitude56° 27.50' N
Longitude8° 11.07' W
Water depth below MSL146.0 m

LOIS (SES) Mooring and CTD Site S140E

Site S140E was a fixed station where moorings were deployed during the Land-Ocean Interaction Study (LOIS) Shelf Edge Study (SES). It was also one of fourteen CTD sites on repeat section S, across the Hebridean Slope, occupied by cruises between March 1995 and September 1996.

Instrument Deployment History

The following tables summarise the instruments deployed at this site for which data may be available.

1995

Mar Apr May Jun Jul Aug Sep Oct Nov Dec
CM                    
BPR                    
ADCP                    
TChn                    

1996

Jan Feb Mar Apr May Jun Jul Aug
CM             a a
BPR             a a
ADCP             a a
TChn             a a

Each different letter in the tables above corresponds to an individual instrument record

Glossary

Note

  1. Transmissometers may have been fitted to some of the current meters.
  2. Only periods for which useful data were returned are shown.

Other Series linked to this Fixed Station for this cruise - 442492 442732 444449 477191 477375 477387


BODC Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
Blank Unqualified
< Below detection limit
> In excess of quoted value
A Taxonomic flag for affinis (aff.)
B Beginning of CTD Down/Up Cast
C Taxonomic flag for confer (cf.)
D Thermometric depth
E End of CTD Down/Up Cast
G Non-taxonomic biological characteristic uncertainty
H Extrapolated value
I Taxonomic flag for single species (sp.)
K Improbable value - unknown quality control source
L Improbable value - originator's quality control
M Improbable value - BODC quality control
N Null value
O Improbable value - user quality control
P Trace/calm
Q Indeterminate
R Replacement value
S Estimated value
T Interpolated value
U Uncalibrated
W Control value
X Excessive difference

SeaDataNet Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
0 no quality control
1 good value
2 probably good value
3 probably bad value
4 bad value
5 changed value
6 value below detection
7 value in excess
8 interpolated value
9 missing value
A value phenomenon uncertain