Search the data

Metadata Report for BODC Series Reference Number 534167


Metadata Summary

Data Description

Data Category CTD or STD cast
Instrument Type
NameCategories
Sea-Bird SBE 19 SEACAT CTD  CTD; water temperature sensor; salinity sensor
Instrument Mounting research vessel
Originating Country United Kingdom
Originator -
Originating Organization Fisheries Research Services Aberdeen Marine Laboratory (now Marine Scotland Aberdeen Marine Laboratory)
Processing Status banked
Online delivery of data Download available - Ocean Data View (ODV) format
Project(s) -
 

Data Identifiers

Originator's Identifier SC13/99/0240
BODC Series Reference 534167
 

Time Co-ordinates(UT)

Start Time (yyyy-mm-dd hh:mm) 1999-08-06 05:48
End Time (yyyy-mm-dd hh:mm) -
Nominal Cycle Interval 1.0 decibars
 

Spatial Co-ordinates

Latitude 59.61400 N ( 59° 36.8' N )
Longitude 1.64100 W ( 1° 38.5' W )
Positional Uncertainty 0.05 to 0.1 n.miles
Minimum Sensor or Sampling Depth 0.99 m
Maximum Sensor or Sampling Depth 107.95 m
Minimum Sensor or Sampling Height 4.04 m
Maximum Sensor or Sampling Height 111.01 m
Sea Floor Depth 112.0 m
Sea Floor Depth Source -
Sensor or Sampling Distribution Variable common depth - All sensors are grouped effectively at the same depth, but this depth varies significantly during the series
Sensor or Sampling Depth Datum Instantaneous - Depth measured below water line or instantaneous water body surface
Sea Floor Depth Datum Instantaneous - Depth measured below water line or instantaneous water body surface
 

Parameters

BODC CODERankUnitsTitle
ACYCAA011DimensionlessSequence number
PRESPR011DecibarsPressure (spatial coordinate) exerted by the water body by profiling pressure sensor and correction to read zero at sea level
TEMPST011Degrees CelsiusTemperature of the water body by CTD or STD

Definition of Rank

  • Rank 1 is a one-dimensional parameter
  • Rank 2 is a two-dimensional parameter
  • Rank 0 is a one-dimensional parameter describing the second dimension of a two-dimensional parameter (e.g. bin depths for moored ADCP data)

Problem Reports

There are no salinity data for this cast.


Data Access Policy

Public domain data

These data have no specific confidentiality restrictions for users. However, users must acknowledge data sources as it is not ethical to publish data without proper attribution. Any publication or other output resulting from usage of the data should include an acknowledgment.

The recommended acknowledgment is

"This study uses data from the data source/organisation/programme, provided by the British Oceanographic Data Centre and funded by the funding body."


Narrative Documents

Sea-Bird SBE 19 and SBE 19plus SEACAT Profiler CTDs

The SBE 19 SEACAT Profiler is a self-contained, battery powered, pumped CTD system designed to measure conductivity, temperature, and pressure in marine or fresh water environments to depths of 10,500 meters. It was replaced by the SBE 19plus model in 2001. An updated version of this instrument is the SBE 19plus V2, which incorporates an electronics upgrade and additional features, with six differentially amplified A/D input channels, one RS-232 data input channel, and 64 MB FLASH memory.

The standard CTD unit comes with a plastic housing (rated to 600 m), although this can be replaced by titanium housing for depths up to 7000 m. It is typically used for CTD profiling although a conversion kit is available for mooring deployments. The CTD can also be attached to an SBE 36 CTD Deck Unit and Power/Data Interface Module (PDIM) for real-time operation on single-core armored cable up to 10,000 m.

Specifications

Parameter SBE 19 SBE 19plus
Temperature

Range: -5 to +35 °C

Accuracy: 0.01 °C

Resolution: 0.001 °C

Calibration: +1 to +32 °C*

Range: -5 to +35 °C

Accuracy: 0.005 °C

Resolution: 0.0001 °C

Calibration: +1 to +32 °C*

Conductivity

Range: 0 to 7 S m-1 (0 to 70 mmho cm-1)

Accuracy: 0.001 S m-1

Resolution: 0.0001 S m-1

Calibration: 0 to 7 S m-1. Physical calibration over the range 1.4 - 6 S m-1*

Range: 0 to 9 Sm-1

Accuracy: 0.0005

Resolution: 0.00005 (most oceanic waters, resolves 0.4 ppm in salinity); 0.00007 (high salinity waters, resolves 0.4 ppm in salinity); 0.00001 (fresh waters, resolves 0.1 ppm in salinity)

Calibration: 0 to 9 S m-1. Physical calibration over the range 1.4 - 6 S m-1*

Strain gauge pressure sensor

Range: 0 to100, 150, 300, 500, 1000, 1500, 3000, 5000, 10000 or 15000 psia

Accuracy: 0.25% of full scale range (100 - 1500 psia); 0.15% of full scale range (3000 - 15000 psia)

Resolution: 0.015% of full scale

Calibration: 0 to full scale in 20% steps

Range: 0 to 20, 100, 350, 1000, 2000, 3500 or 7000 m

Accuracy: 0.1% of full scale range

Resolution: 0.002% of full scale range

Calibration: ambient pressure to full scale range in 5 steps

*Measurements outside this range may be at slightly reduced accuracy due to extrapolation errors.

Options and accessories

Additional sensors can be attached to the CTD, including:

  • high accuracy Paroscientific Digiquartz pressure sensor (depth range 0 to 20, 60, 130, 200, 270, 680, 1400, 2000, 4200, 7000 or 10500 m; accuracy 0.02% of full scale; resolution 0.0025% of full scale)
  • Dissolved Oxygen (SBE 43 DO Sensor)
  • pH* (SBE 18 pH Sensor or SBE 27 pH/ORP Sensor)
  • fluorescence
  • radiance (PAR)
  • light transmission
  • optical backscatter (turbidity)

The standard SBE 5M pump may be replaced by an SBE 5P (plastic housing) or 5T (titanium housing) pump for use with dissolved oxygen and/or other pumped sensors. Further details can be found in the manufacturer's SBE 19plus V2 instrument specification or theSBE 19 andSBE 19 plus user guides.

RV Scotia 13/99 CTD Data Documentation

Introduction

Documentation for data collected on R.V. Scotia cruise 13/99 (4th August - 24th August 1999) by the Fisheries Research Services of the Scottish Marine Office, Aberdeen UK.

Warning

There are no salinity data for this cruise.

Data Collection

The temperature data were collected using a Sea-Bird SBE 19 instrument, which was calibrated using thermometer readings to produce the following equation.

T(cal) = T(obs)

For further information contact:

George Slesser
Marine Laboratory Aberdeen
PO Box 101
Victoria Road
Aberdeen AB11 9DB
Slesser@marlab.ac.uk

General Data Screening carried out by BODC

BODC screen both the series header qualifying information and the parameter values in the data cycles themselves.

Header information is inspected for:

  • Irregularities such as unfeasible values
  • Inconsistencies between related information, for example:
    • Times for instrument deployment and for start/end of data series
    • Length of record and the number of data cycles/cycle interval
    • Parameters expected and the parameters actually present in the data cycles
  • Originator's comments on meter/mooring performance and data quality

Documents are written by BODC highlighting irregularities which cannot be resolved.

Data cycles are inspected using time or depth series plots of all parameters. Currents are additionally inspected using vector scatter plots and time series plots of North and East velocity components. These presentations undergo intrinsic and extrinsic screening to detect infeasible values within the data cycles themselves and inconsistencies as seen when comparing characteristics of adjacent data sets displaced with respect to depth, position or time. Values suspected of being of non-oceanographic origin may be tagged with the BODC flag denoting suspect value; the data values will not be altered.

The following types of irregularity, each relying on visual detection in the plot, are amongst those which may be flagged as suspect:

  • Spurious data at the start or end of the record.
  • Obvious spikes occurring in periods free from meteorological disturbance.
  • A sequence of constant values in consecutive data cycles.

If a large percentage of the data is affected by irregularities then a Problem Report will be written rather than flagging the individual suspect values. Problem Reports are also used to highlight irregularities seen in the graphical data presentations.

Inconsistencies between the characteristics of the data set and those of its neighbours are sought and, where necessary, documented. This covers inconsistencies such as the following:

  • Maximum and minimum values of parameters (spikes excluded).
  • The occurrence of meteorological events.

This intrinsic and extrinsic screening of the parameter values seeks to confirm the qualifying information and the source laboratory's comments on the series. In screening and collating information, every care is taken to ensure that errors of BODC making are not introduced.


Project Information


No Project Information held for the Series

Data Activity or Cruise Information

Cruise

Cruise Name 1399S
Departure Date 1999-08-04
Arrival Date 1999-08-24
Principal Scientist(s)Kenneth A Coull (Fisheries Research Services Aberdeen Marine Laboratory)
Ship FRV Scotia

Complete Cruise Metadata Report is available here


Fixed Station Information


No Fixed Station Information held for the Series


BODC Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
Blank Unqualified
< Below detection limit
> In excess of quoted value
A Taxonomic flag for affinis (aff.)
B Beginning of CTD Down/Up Cast
C Taxonomic flag for confer (cf.)
D Thermometric depth
E End of CTD Down/Up Cast
G Non-taxonomic biological characteristic uncertainty
H Extrapolated value
I Taxonomic flag for single species (sp.)
K Improbable value - unknown quality control source
L Improbable value - originator's quality control
M Improbable value - BODC quality control
N Null value
O Improbable value - user quality control
P Trace/calm
Q Indeterminate
R Replacement value
S Estimated value
T Interpolated value
U Uncalibrated
W Control value
X Excessive difference

SeaDataNet Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
0 no quality control
1 good value
2 probably good value
3 probably bad value
4 bad value
5 changed value
6 value below detection
7 value in excess
8 interpolated value
9 missing value
A value phenomenon uncertain
B nominal value
Q value below limit of quantification