Metadata Report for BODC Series Reference Number 810887
Metadata Summary
Problem Reports
Data Access Policy
Narrative Documents
Project Information
Data Activity or Cruise Information
Fixed Station Information
BODC Quality Flags
SeaDataNet Quality Flags
Metadata Summary
Data Description |
|||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||
Data Identifiers |
|||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||
Time Co-ordinates(UT) |
|||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||
Spatial Co-ordinates | |||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||
Parameters |
|||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||
|
Problem Reports
No Problem Report Found in the Database
Data Access Policy
Open Data
These data have no specific confidentiality restrictions for users. However, users must acknowledge data sources as it is not ethical to publish data without proper attribution. Any publication or other output resulting from usage of the data should include an acknowledgment.
If the Information Provider does not provide a specific attribution statement, or if you are using Information from several Information Providers and multiple attributions are not practical in your product or application, you may consider using the following:
"Contains public sector information licensed under the Open Government Licence v1.0."
Narrative Documents
Neil Brown MK3 CTD
The Neil Brown MK3 conductivity-temperature-depth (CTD) profiler consists of an integral unit containing pressure, temperature and conductivity sensors with an optional dissolved oxygen sensor in a pressure-hardened casing. The most widely used variant in the 1980s and 1990s was the MK3B. An upgrade to this, the MK3C, was developed to meet the requirements of the WOCE project.
The MK3C includes a low hysteresis, titanium strain gauge pressure transducer. The transducer temperature is measured separately, allowing correction for the effects of temperature on pressure measurements. The MK3C conductivity cell features a free flow, internal field design that eliminates ducted pumping and is not affected by external metallic objects such as guard cages and external sensors.
Additional optional sensors include pH and a pressure-temperature fluorometer. The instrument is no longer in production, but is supported (repair and calibration) by General Oceanics.
Specifications
These specification apply to the MK3C version.
Pressure | Temperature | Conductivity | |
Range | 6500 m 3200 m (optional) | -3 to 32°C | 1 to 6.5 S cm-1 |
Accuracy | 0.0015% FS 0.03% FS < 1 msec | 0.0005°C 0.003°C < 30 msec | 0.0001 S cm-1 0.0003 S cm-1 < 30 msec |
Further details can be found in the specification sheet.
Aquatracka fluorometer
The Chelsea Instruments Aquatracka is a logarithmic response fluorometer. It uses a pulsed (5.5 Hz) xenon light source discharging between 320 and 800 nm through a blue filter with a peak transmission of 420 nm and a bandwidth at half maximum of 100 nm. A red filter with sharp cut off, 10% transmission at 664 nm and 678 nm, is used to pass chlorophyll-a fluorescence to the sample photodiode.
The instrument may be deployed either in a through-flow tank, on a CTD frame or moored with a data logging package.
Further details can be found in the manufacturer's specification sheet.
SeaTech Transmissometer
Introduction
The transmissometer is designed to accurately measure the the amount of light transmitted by a modulated Light Emitting Diode (LED) through a fixed-length in-situ water column to a synchronous detector.
Specifications
- Water path length: 5 cm (for use in turbid waters) to 1 m (for use in clear ocean waters).
- Beam diameter: 15 mm
- Transmitted beam collimation: <3 milliradians
- Receiver acceptance angle (in water): <18 milliradians
- Light source wavelength: usually (but not exclusively) 660 nm (red light)
Notes
The instrument can be interfaced to Aanderaa RCM7 current meters. This is achieved by fitting the transmissometer in a slot cut into a customized RCM4-type vane.
A red LED (660 nm) is used for general applications looking at water column sediment load. However, green or blue LEDs can be fitted for specilised optics applications. The light source used is identified by the BODC parameter code.
Further details can be found in the manufacturer's Manual.
RRS Challenger 34 CTD Data Documentation
Instrumentation
The CTD unit was a Neil Brown Mk. 3 incorporating a pressure sensor, conductivity cell, platinum resistance thermometer, and a Beckmann dissolved oxygen sensor. This was mounted vertically in the centre of a protective cage.
Attached to bars of the frame were an Aquatracka logarithmic response fluorometer and a Seatech red light (661 nm) transmissometer with a 25 cm path length.
To the side of the frame was a rosette sampler which could be fitted with up to 12, 1.7 litre Niskin bottles. The base of the bottles were in line with the pressure head. One bottle was fitted with a holder for twin reversing thermometers mounted marginally above the CTD temperature sensor.
Operational procedure and data logging
On each cast the CTD was lowered to a depth of approximately 5 metres and held until the instrument stabilised. It was then raised to the surface and lowered continuously at 0.5 to 1 m/s to as close as possible to the sea floor. The upcast was done in stages between the bottle firing depths.
Data were logged by the Research Vessel Services ABC data logging system. The deck unit outputs were sampled at 32 Hz by a microprocessor interface (the Level A) which passed time stamped averaged cycles at 1 Hz to a Sun workstation (the Level C) via a buffering system (the Level B).
Data processing
The raw data comprised ADC counts. These were converted into engineering units (Volts for fluorometer and transmissometer: ml/l for oxygen: mmho/cm for conductivity: °C for temperature) by the application of laboratory determined calibrations and salinity was computed using the algorithm in Fofonoff and Millard (1983). The data were submitted to BODC in this form.
Within BODC the data were reformatted on an IBM main-frame. At this stage transmissometer air readings recorded during the cruise were used to correct the transmissometer voltage to the manufacturer's specified voltage by ratio. The voltages were then converted to percentage transmittance (multiplied by 20.0) and dissolved oxygen converted to µM (multiplied by 44.66).
Next the data were loaded onto a Silicon Graphics workstation. A sophisticated interactive screening program was used to delimit the downcast, mark the depth range of water bottle firings and flag any spikes on all of the data channels.
The data were returned to the IBM and the downcasts loaded into a database under the Oracle relational database management system. At this stage percentage transmittance was converted to attenuance to eliminate the influence of instrument path length using the equation:
Attenuance = -4.0 * loge (% trans/100) |
Calibration sample data were merged into the database and files of sample value against CTD reading at the bottle depth were prepared for the Principal Investigators to determine the calibrations. Due allowance was made for rig geometry. Note that CTD downcast values were generally used although the bottles were fired on the upcast. The validity of an assumed static water column for the duration of the cast was checked on the graphics workstation and upcast values substituted if necessary.
Sigma-T values were calculated using the algorithm presented in Fofonoff and Millard (1983).
Calibrations
For each cast the mean pressure reading logged whilst the instrument was in air was determined. The average of these, determined as -0.5 db for stations 280-467 and -0.4 db for stations 468-548, was added to each pressure value.
Two digital reversing thermometers were fired at the bottom of each cast. The mean difference, determined for all casts on the cruise, between the averaged calibrated readings and the CTD temperature, -0.007 °C for stations 280-467 and -0.004 °C for stations 468-548, was added to the CTD temperatures.
A sample was taken from the bottom bottle of each cast and salinity was determined using a Guildline Autosal. The mean difference, determined for all casts on the cruise, between the bottle values and the CTD salinity, 0.007 PSU for stations 280-467 and 0.016 PSU for stations 468-548, was added to the CTD salinities.
No extracted chlorophyll values were determined on this cruise. Consequently, no chlorophyll calibration was possible. Note that for part or all of the cruise, it is possible that the fluorometer was fitted with filters for detecting rhodamine tracer and hence the voltages should not be used for estimating chlorophyll.
No dissolved oxygen calibration samples were taken on this cruise and therefore no calibration was possible. All CTD oxygen values have been flagged as suspect to reflect this.
No suspended matter determinations were made on this cruise. Consequently, there are no transmissometer channels other than attenuance.
Warnings
No chlorophyll data are available, only uncalibrated voltages. These should be used with extreme caution as rhodamine filters may have been fitted to the fluorometer.
No dissolved oxygen data are available.
No suspended matter data are available.
References
Fofonoff, N.P and Millard, R.C. Jr. (1983). Algorithms for the computation of fundamental properties of sea water.
Project Information
North Sea Project
The North Sea Project (NSP) was the first Marine Sciences Community Research project of the Natural Environment Research Council (NERC). It evolved from a NERC review of shelf sea research, which identified the need for a concerted multidisciplinary study of circulation, transport and production.
The ultimate aim of the NERC North Sea Project was the development of a suite of prognostic water quality models to aid management of the North Sea. To progress towards water quality models, three intermediate objectives were pursued in parallel:
- Production of a 3-D transport model for any conservative passive constituent, incorporating improved representations of the necessary physics - hydrodynamics and dispersion;
- Identifying and quantifying non-conservative processes - sources and sinks determining the cycling and fate of individual constituents;
- Defining a complete seasonal cycle as a database for all the observational studies needed to formulate, drive and test models.
Proudman Oceanographic Laboratory hosted the project, which involved over 200 scientists and support staff from NERC and other Government funded laboratories, as well as seven universities and polytechnics.
The project ran from 1987 to 1992, with marine field data collection between April 1988 and October 1989. One shakedown (CH28) and fifteen survey cruises (Table 1), each lasting 12 days and following the same track, were repeated monthly. The track selected covered the summer-stratified waters of the north and the homogeneous waters in the Southern Bight in about equal lengths together with their separating frontal band from Flamborough head to Dogger Bank, the Friesian Islands and the German Bight. Mooring stations were maintained at six sites for the duration of the project.
Table 1: Details of NSP Survey Cruises on RRS Challenger | |
---|---|
Cruise No. | Date |
CH28 | 29/04/88 - 15/05/88 |
CH33 | 04/08/88 - 16/08/88 |
CH35 | 03/09/88 - 15/09/88 |
CH37 | 02/10/88 - 14/10/88 |
CH39 | 01/11/88 - 13/11/88 |
CH41 | 01/12/88 - 13/12/88 |
CH43 | 30/12/88 - 12/01/89 |
CH45 | 28/01/89 - 10/02/89 |
CH47 | 27/02/89 - 12/03/89 |
CH49 | 29/03/89 - 10/04/89 |
CH51 | 27/04/89 - 09/05/89 |
CH53 | 26/05/89 - 07/06/89 |
CH55 | 24/06/89 - 07/07/89 |
CH57 | 24/07/89 - 06/08/89 |
CH59 | 23/08/89 - 04/09/89 |
CH61 | 21/09/89 - 03/10/89 |
Alternating with the survey cruises were process study cruises (Table 2), which investigated some particular aspect of the science of the North Sea. These included fronts (nearshore, circulation and mixing), sandwaves and sandbanks, plumes (Humber, Wash, Thames and Rhine), resuspension, air-sea exchange, primary productivity and blooms/chemistry.
Table 2: Details of NSP Process cruises on RRS Challenger | ||
---|---|---|
Cruise No. | Date | Process |
CH34 | 18/08/88 - 01/09/88 | Fronts - nearshore |
CH36 | 16/09/88 - 30/09/88 | Fronts - mixing |
CH56 | 08/07/89 - 22/07/89 | Fronts - circulation |
CH58 | 07/08/89 - 21/08/89 | Fronts - mixing |
CH38 | 24/10/88 - 31/10/88 | Sandwaves |
CH40 | 15/11/88 - 29/11/88 | Sandbanks |
CH42 | 15/12/88 - 29/12/88 | Plumes/Sandbanks |
CH46 | 12/02/89 - 26/02/89 | Plumes/Sandwaves |
CH44 | 13/01/89 - 27/01/89 | Resuspension |
CH52 | 11/05/89 - 24/05/89 | Resuspension |
CH60 | 06/09/89 - 19/09/89 | Resuspension |
CH48 | 13/03/89 - 27/03/89 | Air/sea exchanges |
CH62 | 05/10/89 - 19/10/89 | Air/sea exchanges |
CH50 | 12/04/89 - 25/04/89 | Blooms/chemistry |
CH54 | 09/06/89 - 22/06/89 | Production |
In addition to the main data collection period, a series of cruises took place between October 1989 and October 1990 that followed up work done on previous cruises (Table 3). Process studies relating to blooms, plumes (Humber, Wash and Rhine), sandwaves and the flux of contaminants through the Dover Strait were carried out as well as two `survey' cruises.
Table 3: Details of NSP `Follow up' cruises on RRS Challenger | ||
---|---|---|
Cruise No. | Date | Process |
CH62A | 23/10/89 - 03/11/89 | Blooms |
CH64 | 03/04/90 - 03/05/90 | Blooms |
CH65 | 06/05/90 - 17/05/90 | Humber plume |
CH66A | 20/05/90 - 31/05/90 | Survey |
CH66B | 03/06/90 - 18/06/90 | Contaminants through Dover Strait |
CH69 | 26/07/90 - 07/08/90 | Resuspension/Plumes |
CH72A | 20/09/90 - 02/10/90 | Survey |
CH72B | 04/10/90 - 06/10/90 | Sandwaves/STABLE |
CH72C | 06/10/90 - 19/10/90 | Rhine plume |
The data collected during the observational phase of the North Sea Project comprised one of the most detailed sets of observations ever undertaken in any shallow shelf sea at that time.
North Sea Project Frontal Process Study
The nearshore, mixing and circulation fronts studies all concerned the front extending from the region of Flamborough Head offshore between summer stratified water to the north and well mixed water to the south. The associated local circulation and distinctive dispersion, notably by eddies exchanging material across the front, are important to North Sea transports of all water-borne constituents. In collaboration with MAFF, moorings were laid and CTD, ADCP and SeaSoar surveys carried out to define the dynamical fields for model testing and interpretation. Near shore HF radar gave synoptic coverage of large scale and eddy contributions to transport. Further offshore drogue tracks and the spreading of released Rhodamine B was used both to assess circulation and horizontal and vertical mixing.
Moorings were deployed at five stratified sites (FA, FB, FC, DA and DB) to study the circulation in the frontal area.
The deployment history is summarised below:
Site | Position | Rig | Deployment Date | Comments |
---|---|---|---|---|
FA | 53° 59.87'N, 000° 09.43'E | 56381 | 09 July 1989 | |
FB | 54° 03.45'N, 000° 17.42'E | 56382 | 09 July 1989 | |
FC | No data returned | |||
DA | 54° 53.98'N, 001° 11.70'E | 56386 | 11 July 1989 | Transmissometer mooring lost |
DB | 54° 55.05'N, 001° 04.06'E | 56388 | 11 July 1989 |
Data Activity or Cruise Information
Cruise
Cruise Name | CH34 |
Departure Date | 1988-08-18 |
Arrival Date | 1988-09-01 |
Principal Scientist(s) | John H Simpson (University of Wales, Bangor School of Ocean Sciences) |
Ship | RRS Challenger |
Complete Cruise Metadata Report is available here
Fixed Station Information
Fixed Station Information
Station Name | NSP CTD Site DK |
Category | Offshore location |
Latitude | 54° 31.63' N |
Longitude | 0° 22.45' W |
Water depth below MSL |
North Sea Project CTD Site DK
Site DK was one of 123 North Sea Project CTD fixed stations.
Casts were performed by 17 cruises between 13/08/1988 and 01/10/1990, the measurements collected lie within a box bounded by co-ordinates 54.50972°N, -0.40174°E at the southwest corner and 54.54475°N, -0.34649°E at the northeast corner.
Related Fixed Station activities are detailed in Appendix 1
BODC Quality Control Flags
The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:
Flag | Description |
---|---|
Blank | Unqualified |
< | Below detection limit |
> | In excess of quoted value |
A | Taxonomic flag for affinis (aff.) |
B | Beginning of CTD Down/Up Cast |
C | Taxonomic flag for confer (cf.) |
D | Thermometric depth |
E | End of CTD Down/Up Cast |
G | Non-taxonomic biological characteristic uncertainty |
H | Extrapolated value |
I | Taxonomic flag for single species (sp.) |
K | Improbable value - unknown quality control source |
L | Improbable value - originator's quality control |
M | Improbable value - BODC quality control |
N | Null value |
O | Improbable value - user quality control |
P | Trace/calm |
Q | Indeterminate |
R | Replacement value |
S | Estimated value |
T | Interpolated value |
U | Uncalibrated |
W | Control value |
X | Excessive difference |
SeaDataNet Quality Control Flags
The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:
Flag | Description |
---|---|
0 | no quality control |
1 | good value |
2 | probably good value |
3 | probably bad value |
4 | bad value |
5 | changed value |
6 | value below detection |
7 | value in excess |
8 | interpolated value |
9 | missing value |
A | value phenomenon uncertain |
B | nominal value |
Q | value below limit of quantification |
Appendix 1: NSP CTD Site DK
Related series for this Fixed Station are presented in the table below. Further information can be found by following the appropriate links.
If you are interested in these series, please be aware we offer a multiple file download service. Should your credentials be insufficient for automatic download, the service also offers a referral to our Enquiries Officer who may be able to negotiate access.
Series Identifier | Data Category | Start date/time | Start position | Cruise |
---|---|---|---|---|
769864 | CTD or STD cast | 1988-08-13 16:13:00 | 54.50967 N, 0.3465 W | RRS Challenger CH33 |
809155 | CTD or STD cast | 1988-08-19 17:10:00 | 54.514 N, 0.39717 W | RRS Challenger CH34 |
810899 | CTD or STD cast | 1988-08-25 08:10:00 | 54.51717 N, 0.40167 W | RRS Challenger CH34 |
811829 | CTD or STD cast | 1988-08-31 03:39:00 | 54.544 N, 0.36733 W | RRS Challenger CH34 |
811830 | CTD or STD cast | 1988-08-31 04:07:00 | 54.53817 N, 0.36383 W | RRS Challenger CH34 |
811842 | CTD or STD cast | 1988-08-31 04:34:00 | 54.51333 N, 0.39333 W | RRS Challenger CH34 |
783962 | CTD or STD cast | 1988-09-12 01:36:00 | 54.51483 N, 0.35217 W | RRS Challenger CH35 |
784848 | CTD or STD cast | 1988-10-11 16:57:00 | 54.514 N, 0.353 W | RRS Challenger CH37 |
822170 | CTD or STD cast | 1988-11-10 01:44:00 | 54.51333 N, 0.34983 W | RRS Challenger CH39 |
785250 | CTD or STD cast | 1988-12-07 21:16:00 | 54.51667 N, 0.34867 W | RRS Challenger CH41 |
786019 | CTD or STD cast | 1989-01-01 15:28:00 | 54.51833 N, 0.35067 W | RRS Challenger CH43 |
791869 | CTD or STD cast | 1989-02-06 19:30:00 | 54.51533 N, 0.34817 W | RRS Challenger CH45 |
1860151 | Water sample data | 1989-02-06 19:34:00 | 54.51541 N, 0.34814 W | RRS Challenger CH45 |
793108 | CTD or STD cast | 1989-03-07 11:12:00 | 54.51767 N, 0.35167 W | RRS Challenger CH47 |
1857849 | Water sample data | 1989-03-07 11:16:00 | 54.51764 N, 0.35168 W | RRS Challenger CH47 |
794486 | CTD or STD cast | 1989-04-08 02:18:00 | 54.51433 N, 0.34883 W | RRS Challenger CH49 |
1859162 | Water sample data | 1989-04-08 02:21:00 | 54.5144 N, 0.34882 W | RRS Challenger CH49 |
795594 | CTD or STD cast | 1989-05-06 09:36:00 | 54.52117 N, 0.351 W | RRS Challenger CH51 |
2082694 | Water sample data | 1989-05-06 09:43:35 | 54.52124 N, 0.351 W | RRS Challenger CH51 |
2083857 | Water sample data | 1989-05-06 09:43:35 | 54.52124 N, 0.351 W | RRS Challenger CH51 |
2096468 | Water sample data | 1989-05-06 09:43:35 | 54.52124 N, 0.351 W | RRS Challenger CH51 |
2097472 | Water sample data | 1989-05-06 09:43:35 | 54.52124 N, 0.351 W | RRS Challenger CH51 |
1861431 | Water sample data | 1989-05-06 09:44:00 | 54.52124 N, 0.351 W | RRS Challenger CH51 |
796966 | CTD or STD cast | 1989-06-04 01:20:00 | 54.517 N, 0.34817 W | RRS Challenger CH53 |
1864011 | Water sample data | 1989-06-04 01:26:00 | 54.51703 N, 0.34824 W | RRS Challenger CH53 |
798242 | CTD or STD cast | 1989-07-02 23:22:00 | 54.51817 N, 0.35017 W | RRS Challenger CH55 |
1657189 | Water sample data | 1989-07-02 23:26:00 | 54.5181 N, 0.35012 W | RRS Challenger CH55 |
1866460 | Water sample data | 1989-07-02 23:26:00 | 54.5181 N, 0.35012 W | RRS Challenger CH55 |
799454 | CTD or STD cast | 1989-08-02 23:18:00 | 54.51967 N, 0.355 W | RRS Challenger CH57 |
1246311 | Water sample data | 1989-08-02 23:21:00 | 54.51967 N, 0.35508 W | RRS Challenger CH57 |
1709754 | Water sample data | 1989-08-02 23:21:00 | 54.51967 N, 0.35508 W | RRS Challenger CH57 |
1865118 | Water sample data | 1989-08-02 23:21:00 | 54.51967 N, 0.35508 W | RRS Challenger CH57 |
802132 | CTD or STD cast | 1989-08-31 23:12:00 | 54.518 N, 0.35167 W | RRS Challenger CH59 |
1856822 | Water sample data | 1989-08-31 23:17:00 | 54.51794 N, 0.35163 W | RRS Challenger CH59 |
800788 | CTD or STD cast | 1989-09-30 12:44:00 | 54.51533 N, 0.34983 W | RRS Challenger CH61 |
1855554 | Water sample data | 1989-09-30 12:48:00 | 54.5153 N, 0.3498 W | RRS Challenger CH61 |
2086947 | Water sample data | 1989-09-30 12:48:18 | 54.5153 N, 0.3498 W | RRS Challenger CH61 |
2088026 | Water sample data | 1989-09-30 12:48:18 | 54.5153 N, 0.3498 W | RRS Challenger CH61 |
805283 | CTD or STD cast | 1990-10-01 05:41:00 | 54.51567 N, 0.35433 W | RRS Challenger CH72A |