Search the data

Metadata Report for BODC Series Reference Number 874695


Metadata Summary

Data Description

Data Category CTD or STD cast
Instrument Type
NameCategories
SeaTech transmissometer  transmissometers
Sea-Bird SBE 911 CTD  CTD; water temperature sensor; salinity sensor
Sea-Bird SBE 13 Dissolved Oxygen Sensor  dissolved gas sensors
Chelsea Technologies Group Aquatracka fluorometer  fluorometers
WETLabs ac-3 Absorption and Attenuation meter  transmissometers
Instrument Mounting research vessel
Originating Country Netherlands
Originator Dr Henko de Stigter
Originating Organization Royal Netherlands Institute for Sea Research
Processing Status banked
Online delivery of data Download available - Ocean Data View (ODV) format
Project(s) OMEX II-II
 

Data Identifiers

Originator's Identifier CTD07
BODC Series Reference 874695
 

Time Co-ordinates(UT)

Start Time (yyyy-mm-dd hh:mm) 1999-05-16 08:30
End Time (yyyy-mm-dd hh:mm) -
Nominal Cycle Interval 2.0 decibars
 

Spatial Co-ordinates

Latitude 41.99950 N ( 41° 60.0' N )
Longitude 9.73317 W ( 9° 44.0' W )
Positional Uncertainty 0.0 to 0.01 n.miles
Minimum Sensor or Sampling Depth 2.98 m
Maximum Sensor or Sampling Depth 2066.25 m
Minimum Sensor or Sampling Height -6.25 m
Maximum Sensor or Sampling Height 2057.02 m
Sea Floor Depth 2060.0 m
Sea Floor Depth Source -
Sensor or Sampling Distribution Variable common depth - All sensors are grouped effectively at the same depth, but this depth varies significantly during the series
Sensor or Sampling Depth Datum Instantaneous - Depth measured below water line or instantaneous water body surface
Sea Floor Depth Datum Instantaneous - Depth measured below water line or instantaneous water body surface
 

Parameters

BODC CODERankUnitsTitle
ATTNZR011per metreAttenuation (red light wavelength) per unit length of the water body by transmissometer
ATTNZS011per metreAttenuation (red light wavelength) per unit length of the water body by WET Labs transmissometer and calibration to read zero in clear water
CPHLPR011Milligrams per cubic metreConcentration of chlorophyll-a {chl-a CAS 479-61-8} per unit volume of the water body [particulate >unknown phase] by in-situ chlorophyll fluorometer
POATCV011per metrePotential attenuance (unspecified wavelength) per unit length of the water body by transmissometer and computation using P-EXEC algorithm
POTMCV011Degrees CelsiusPotential temperature of the water body by computation using UNESCO 1983 algorithm
PRESPR011DecibarsPressure (spatial coordinate) exerted by the water body by profiling pressure sensor and correction to read zero at sea level
PSALST011DimensionlessPractical salinity of the water body by CTD and computation using UNESCO 1983 algorithm
SIGTPR011Kilograms per cubic metreSigma-theta of the water body by CTD and computation from salinity and potential temperature using UNESCO algorithm
TEMPST011Degrees CelsiusTemperature of the water body by CTD or STD

Definition of Rank

  • Rank 1 is a one-dimensional parameter
  • Rank 2 is a two-dimensional parameter
  • Rank 0 is a one-dimensional parameter describing the second dimension of a two-dimensional parameter (e.g. bin depths for moored ADCP data)

Problem Reports

No Problem Report Found in the Database


Data Access Policy

Public domain data

These data have no specific confidentiality restrictions for users. However, users must acknowledge data sources as it is not ethical to publish data without proper attribution. Any publication or other output resulting from usage of the data should include an acknowledgment.

The recommended acknowledgment is

"This study uses data from the data source/organisation/programme, provided by the British Oceanographic Data Centre and funded by the funding body."


Narrative Documents

Sea Bird Electronics SBE13 Dissolved Oxygen Sensor

The SBE 13 was designed as an auxiliary sensor for Sea Bird SBE 9plus, but can fitted in custom instrumentation applications. When used with the SBE 9 Underwater Unit, a flow-through plenum improves the data quality, as the pumping water over the sensor membrane reduces the errors caused by oxygen depletion during the periods of slow or intermittent flushing and also reduces exposure to biofouling.

The output voltage is proportional to membrane current (oxygen current) and to the sensor element's membrane temperature (oxygen temperature), which is used for internal temperature compensation.

Two versions of the SBE 13 are available: the SBE 13Y uses a YSI polarographic element with replaceable membranes to provide in situ measurements up to 2000 m depth and the SBE 13B uses a Beckman polarographic element to provide in situ measurements up to 10500 m depth, depending on the sensor casing. This sensor includes a replaceable sealed electrolyte membrane cartridge.

The SBE 13 instrument has been out of production since 2001 and has been superseded by the SBE 43.

Specifications

Measurement range 0 to 15 mL L-1
Accuracy 0.1 mL L-1
Time response

2 s at 25°C

5 s at 0°C

Depth range

2000 m (SBE 13Y- housing in anodized aluminum)

6800 m (SBE 13B- housing in anodized aluminum)

105000 m (SBE 13B- housing in titanium)

Further details can be found in the manufacturer's specification sheet.

Sea-Bird Electronics SBE 911 and SBE 917 series CTD profilers

The SBE 911 and SBE 917 series of conductivity-temperature-depth (CTD) units are used to collect hydrographic profiles, including temperature, conductivity and pressure as standard. Each profiler consists of an underwater unit and deck unit or SEARAM. Auxiliary sensors, such as fluorometers, dissolved oxygen sensors and transmissometers, and carousel water samplers are commonly added to the underwater unit.

Underwater unit

The CTD underwater unit (SBE 9 or SBE 9 plus) comprises a protective cage (usually with a carousel water sampler), including a main pressure housing containing power supplies, acquisition electronics, telemetry circuitry, and a suite of modular sensors. The original SBE 9 incorporated Sea-Bird's standard modular SBE 3 temperature sensor and SBE 4 conductivity sensor, and a Paroscientific Digiquartz pressure sensor. The conductivity cell was connected to a pump-fed plastic tubing circuit that could include auxiliary sensors. Each SBE 9 unit was custom built to individual specification. The SBE 9 was replaced in 1997 by an off-the-shelf version, termed the SBE 9 plus, that incorporated the SBE 3 plus (or SBE 3P) temperature sensor, SBE 4C conductivity sensor and a Paroscientific Digiquartz pressure sensor. Sensors could be connected to a pump-fed plastic tubing circuit or stand-alone.

Temperature, conductivity and pressure sensors

The conductivity, temperature, and pressure sensors supplied with Sea-Bird CTD systems have outputs in the form of variable frequencies, which are measured using high-speed parallel counters. The resulting count totals are converted to numeric representations of the original frequencies, which bear a direct relationship to temperature, conductivity or pressure. Sampling frequencies for these sensors are typically set at 24 Hz.

The temperature sensing element is a glass-coated thermistor bead, pressure-protected inside a stainless steel tube, while the conductivity sensing element is a cylindrical, flow-through, borosilicate glass cell with three internal platinum electrodes. Thermistor resistance or conductivity cell resistance, respectively, is the controlling element in an optimized Wien Bridge oscillator circuit, which produces a frequency output that can be converted to a temperature or conductivity reading. These sensors are available with depth ratings of 6800 m (aluminium housing) or 10500 m (titanium housing). The Paroscientific Digiquartz pressure sensor comprises a quartz crystal resonator that responds to pressure-induced stress, and temperature is measured for thermal compensation of the calculated pressure.

Additional sensors

Optional sensors for dissolved oxygen, pH, light transmission, fluorescence and others do not require the very high levels of resolution needed in the primary CTD channels, nor do these sensors generally offer variable frequency outputs. Accordingly, signals from the auxiliary sensors are acquired using a conventional voltage-input multiplexed A/D converter (optional). Some Sea-Bird CTDs use a strain gauge pressure sensor (Senso-Metrics) in which case their pressure output data is in the same form as that from the auxiliary sensors as described above.

Deck unit or SEARAM

Each underwater unit is connected to a power supply and data logging system: the SBE 11 (or SBE 11 plus) deck unit allows real-time interfacing between the deck and the underwater unit via a conductive wire, while the submersible SBE 17 (or SBE 17 plus) SEARAM plugs directly into the underwater unit and data are downloaded on recovery of the CTD. The combination of SBE 9 and SBE 17 or SBE 11 are termed SBE 917 or SBE 911, respectively, while the combinations of SBE 9 plus and SBE 17 plus or SBE 11 plus are termed SBE 917 plus or SBE 911 plus.

Specifications

Specifications for the SBE 9 plus underwater unit are listed below:

Parameter Range Initial accuracy Resolution at 24 Hz Response time
Temperature -5 to 35°C 0.001°C 0.0002°C 0.065 sec
Conductivity 0 to 7 S m-1 0.0003 S m-1 0.00004 S m-1 0.065 sec (pumped)
Pressure 0 to full scale (1400, 2000, 4200, 6800 or 10500 m) 0.015% of full scale 0.001% of full scale 0.015 sec

Further details can be found in the manufacturer's specification sheet.

Aquatracka fluorometer

The Chelsea Instruments Aquatracka is a logarithmic response fluorometer. It uses a pulsed (5.5 Hz) xenon light source discharging between 320 and 800 nm through a blue filter with a peak transmission of 420 nm and a bandwidth at half maximum of 100 nm. A red filter with sharp cut off, 10% transmission at 664 nm and 678 nm, is used to pass chlorophyll-a fluorescence to the sample photodiode.

The instrument may be deployed either in a through-flow tank, on a CTD frame or moored with a data logging package.

Further details can be found in the manufacturer's specification sheet.

WETLabs ac-3 transmissometer

This instrument performs concurrent measurements of the water attenuation and absorption coefficients, at three wavelengths, by incorporating a dual path configuration. Both paths share a common filter wheel, control and acquisition electronics.

The ac-3 consists of two pressure housings separated by three stand-offs. The shorter pressure cylinder houses the light sources, filter wheel and transmitter optics. The longer pressure cylinder houses the receiver optics and the control and acquisition electronics for the unit. The attenuation (a beam) and absorption (c beam) beam paths and flow assemblies are housed between the two cylinders.

When light is transmitted from the c beam, it passes through bandpass filters, exhibiting a special configuration, which allow for compensation in temperature coefficients and provide a low level ambient rejection. When the primary beam passes through the water sample, the scattered light is absorbed by the flow tube in order to provide minimum interaction with the primary optical path, the reflected light is subject to both scattering and absorptive losses, until it reaches the receiver detector, thus providing a measurement.

The operation mode for the a beam is very similar, however it is phased by 60 degrees from the c beam. When the light reaches the flow tube, the forward scattered light is reflected back into the water volume by the reflective tube and it is then collected by a diffused area detector at the far end of the tube.

This instrument is no longer under production and has been superseded by other models.

Specifications

Data output 24 bits
Path length 10 or 25 cm
Temperature error 0.01% full range
Precision 0.001 m-1 for a 25 cm path length
Baud rate 19200
Number of channels 6
Wavelength 650, 676 an 715 nm
Typical linearity
c beam 0.9999
a beam 0.998

SeaTech Transmissometer

Introduction

The transmissometer is designed to accurately measure the the amount of light transmitted by a modulated Light Emitting Diode (LED) through a fixed-length in-situ water column to a synchronous detector.

Specifications

  • Water path length: 5 cm (for use in turbid waters) to 1 m (for use in clear ocean waters).
  • Beam diameter: 15 mm
  • Transmitted beam collimation: <3 milliradians
  • Receiver acceptance angle (in water): <18 milliradians
  • Light source wavelength: usually (but not exclusively) 660 nm (red light)

Notes

The instrument can be interfaced to Aanderaa RCM7 current meters. This is achieved by fitting the transmissometer in a slot cut into a customized RCM4-type vane.

A red LED (660 nm) is used for general applications looking at water column sediment load. However, green or blue LEDs can be fitted for specilised optics applications. The light source used is identified by the BODC parameter code.

Further details can be found in the manufacturer's Manual.

RV Pelagia 108, 109, 118, 121, 123, 138 CTD Data Documentation

Instrumentation and Shipboard Procedures

The CTD profiles were taken with a SeaBird SBE911 plus system. The instrument was equipped with a SBE-3 temperature sensor, SBE-4 conductivity sensor and SBE-13 oxygen sensor. However, the latter only returned useful data for cruises PLG108 and PLG138.

A SeaTech transmissometer (25 cm path length: 665 nm monochromatic light source) was also included in the CTD package for every cruise. During PLG138 a WET Labs AC3 system that measured optical attenuance at 676 nm was also fitted. This system also estimated the chlorophyll concentration by comparison of attenuance at different wavelengths.

On all cruises other than PLG138 the CTD package included a Chelsea Instruments Aquatracka fluorometer. However, this only returned useful data on cruises PLG108 and PLG109.

The CTD was fitted with a General Oceanics Rosette sampler carrying 24 12-litre NOEX bottles.

The number of CTD casts available for each Pelagia cruise is as follows:

PLG108   13
PLG109   18
PLG118   07
PLG121   03
PLG123   08
PLG138   20

Data Acquisition

The data were logged on a PC using the standard SeaBird SeaSave data acquisition software.

Post-Cruise Processing

NIOZ Processing

Hendrik van Aken's group at the Netherlands Institute for Sea Research worked up the CTD data to a very high standard. Temperature, salinity and dissolved oxygen have been calibrated to WOCE standards using the appropriate water bottle data. If there were any doubts about the quality of the oxygen data then the channel was deleted from the data set.

The chlorophyll values given are based upon manufacturer's calibration coefficients, as no extracted chlorophyll data were available from these cruises. Consequently, the absolute concentration values should be treated with a degree of caution. The data from PLG108 and PLG109 appear credible, but the surface mixed layer values seem lower than those returned by other OMEX II cruises in the same area and at the same time of year. The values from PLG138 are high, especially at depth (>1 mg/m3) and there is a worrying increase of chlorophyll with depth at depths >1000 m. It is recommended for this cruise that the data be considered as having no units and that the deep data be totally ignored.

The SeaTech transmissometer data have been calibrated using the SeaBird software, which incorporates an air correction. However, the clear water attenuance values are of the order of 0.38 to 0.40 per m, which is slightly higher than expected for Atlantic waters (usually 0.35 to 0.36 per m). This may possibly be explained by the wavelength (665 nm) reported for the beam. The 'standard' Atlantic values were measured at 660 nm.

The WET Labs AC3 system was calibrated in terms of attenuance due to suspended sediment load. Consequently, the data give values of near zero for clear water.

In addition to calibration, the data were thoroughly 'cleaned' to eliminate spikes and smoothed. The processed data were supplied to BODC as 1db binned profiles.

BODC Data Processing

The data were converted into BODC's standard format. The only modification made to the data during reformatting was the conversion of dissolved oxygen units from micromoles/kg to micromoles/litre using the sigma-theta channel included with the data.

The data were examined using the BODC in-house graphics editor, which confirmed that they were exceptionally clean. No topping and tailing was required and flagging was confined to a small number of zero values in the attenuance channel.

The screened data were loaded into the Oracle database. Calibration records were set up to indicate that the data had been supplied as fully calibrated. The only exception to this was a salinity correction of -0.07 applied by BODC to the data from PLG121 following the report of a processing error by Dr. van Aken. The data were then migrated to the National Oceanographic Database.

BODC has a standard storage convention for storing CTD data. Shallow (<100 db) casts are held at 1 decibar, but deeper casts are stored at the 2 decibar resolution recommended by SCOR. These data have already been binned, which can cause confusion about what happens when the data are passed through a second binning procedure. Users should therefore be aware how the BODC processing has modified the data.

The BODC binning algorithm defines the top bin as the average of all data with a pressure from zero to 0.9999 (1 db binning) or 1.9999 (2 db binning) and labels these bins as 0.5 or 1.0 respectively. The original data were supplied with the top bin labelled as zero. The following show how the original pressure channel maps to the BODC pressure channel for each of the binning intervals used.

1db binning: BODC pressure = input pressure + 0.5
(effectively a change in labelling convention from the top to the mid-point of the bin)
2 db binning: Input pressures 0.0 and 1.0 averaged to give BODC pressure 1.0
Input pressures 2.0 and 3.0 averaged to give BODC pressure 3.0

Data Warnings

The chlorophyll data from these cruises have been obtained using manufacturer's calibrations. The absolute values should therefore be used with caution, particularly for cruise PLG138.


Project Information

Ocean Margin EXchange (OMEX) II - II

Introduction

OMEX was a European multidisciplinary oceanographic research project that studied and quantified the exchange processes of carbon and associated elements between the continental shelf of western Europe and the open Atlantic Ocean. The project ran in two phases known as OMEX I (1993-1996) and OMEX II - II (1997-2000), with a bridging phase OMEX II - I (1996-1997). The project was supported by the European Union under the second and third phases of its MArine Science and Technology Programme (MAST) through contracts MAS2-CT93-0069 and MAS3-CT97-0076. It was led by Professor Roland Wollast from Université Libre de Bruxelles, Belgium and involved more than 100 scientists from 10 European countries.

Scientific Objectives

The aim of the Ocean Margin EXchange (OMEX) project was to gain a better understanding of the physical, chemical and biological processes occurring at the ocean margins in order to quantify fluxes of energy and matter (carbon, nutrients and other trace elements) across this boundary. The research culminated in the development of quantitative budgets for the areas studied using an approach based on both field measurements and modeling.

OMEX II - II (1997-2000)

The second phase of OMEX concentrated exclusively on the Iberian Margin, although RV Belgica did make some measurements on La Chapelle Bank whilst on passage to Zeebrugge. This is a narrow-shelf environment, which contrasts sharply with the broad shelf adjacent to the Goban Spur. This phase of the project was also strongly multidisciplinary in approach, covering physics, chemistry, biology and geology.

There were a total of 33 OMEX II - II research cruises, plus 23 CPR tows, most of which were instrumented. Some of these cruises took place before the official project start date of June 1997.

Data Availability

Field data collected during OMEX II - II have been published by BODC as a CD-ROM product, entitled:

  • OMEX II Project Data Set (three discs)

Further descriptions of this product and order forms may be found on the BODC web site.

The data are also held in BODC's databases and subsets may be obtained by request from BODC.


Data Activity or Cruise Information

Cruise

Cruise Name PE138
Departure Date 1999-05-08
Arrival Date 1999-06-01
Principal Scientist(s)Henko de Stigter (Royal Netherlands Institute for Sea Research)
Ship RV Pelagia

Complete Cruise Metadata Report is available here


Fixed Station Information


No Fixed Station Information held for the Series


BODC Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
Blank Unqualified
< Below detection limit
> In excess of quoted value
A Taxonomic flag for affinis (aff.)
B Beginning of CTD Down/Up Cast
C Taxonomic flag for confer (cf.)
D Thermometric depth
E End of CTD Down/Up Cast
G Non-taxonomic biological characteristic uncertainty
H Extrapolated value
I Taxonomic flag for single species (sp.)
K Improbable value - unknown quality control source
L Improbable value - originator's quality control
M Improbable value - BODC quality control
N Null value
O Improbable value - user quality control
P Trace/calm
Q Indeterminate
R Replacement value
S Estimated value
T Interpolated value
U Uncalibrated
W Control value
X Excessive difference

SeaDataNet Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
0 no quality control
1 good value
2 probably good value
3 probably bad value
4 bad value
5 changed value
6 value below detection
7 value in excess
8 interpolated value
9 missing value
A value phenomenon uncertain
Q value below limit of quantification