Metadata Report for BODC Series Reference Number 1025549


Metadata Summary

Data Description

Data Category CTD or STD cast
Instrument Type
NameCategories
Sea-Bird SBE 19plus SEACAT CTD  CTD; water temperature sensor; salinity sensor
WETLabs ECO-FLNTU combined fluorometer and turbidity sensor  fluorometers; optical backscatter sensors
Instrument Mounting research vessel
Originating Country United Kingdom
Originator Mr George Slesser
Originating Organization Fisheries Research Services Aberdeen Marine Laboratory (now Marine Scotland Aberdeen Marine Laboratory)
Processing Status banked
Project(s) -
 

Data Identifiers

Originator's Identifier SC02/09/71
BODC Series Reference 1025549
 

Time Co-ordinates(UT)

Start Time (yyyy-mm-dd hh:mm) 2009-02-02 14:03
End Time (yyyy-mm-dd hh:mm) -
Nominal Cycle Interval 1.0 decibars
 

Spatial Co-ordinates

Latitude 60.01917 N ( 60° 1.2' N )
Longitude 1.61500 W ( 1° 36.9' W )
Positional Uncertainty 0.05 to 0.1 n.miles
Minimum Sensor Depth 0.99 m
Maximum Sensor Depth 107.94 m
Minimum Sensor Height 8.06 m
Maximum Sensor Height 115.01 m
Sea Floor Depth 116.0 m
Sensor Distribution Variable common depth - All sensors are grouped effectively at the same depth, but this depth varies significantly during the series
Sensor Depth Datum Instantaneous - Depth measured below water line or instantaneous water body surface
Sea Floor Depth Datum Instantaneous - Depth measured below water line or instantaneous water body surface
 

Parameters

BODC CODE Rank Units Short Title Title
ACYCAA01 1 Dimensionless Record_No Sequence number
CNCLCCI1 1 Siemens per metre Cond_ind_cal Electrical conductivity of the water body by in-situ conductivity cell and calibration against independent measurements
CPHLPM01 1 Milligrams per cubic metre chl-a_water_ISfluor_manufctrcal_sensor1 Concentration of chlorophyll-a {chl-a CAS 479-61-8} per unit volume of the water body [particulate >unknown phase] by in-situ chlorophyll fluorometer and manufacturer's calibration applied
PRESPR01 1 Decibars Pres_Z Pressure (spatial co-ordinate) exerted by the water body by profiling pressure sensor and corrected to read zero at sea level
PSALST01 1 Dimensionless P_sal_CTD Practical salinity of the water body by CTD and computation using UNESCO 1983 algorithm
TEMPST01 1 Degrees Celsius WC_temp_CTD Temperature of the water body by CTD or STD
TURBXXXX 1 Nephelometric Turbidity Units Turbidity Turbidity of the water body
 

Definition of Rank

  • Rank 1 is a one-dimensional parameter
  • Rank 2 is a two-dimensional parameter
  • Rank 0 is a one-dimensional parameter describing the second dimension of a two-dimensional parameter (e.g. bin depths for moored ADCP data)

Problem Reports

No Problem Report Found in the Database


Data Access Policy

Public domain data

These data have no specific confidentiality restrictions for users. However, users must acknowledge data sources as it is not ethical to publish data without proper attribution. Any publication or other output resulting from usage of the data should include an acknowledgment.

The recommended acknowledgment is

"This study uses data from the data source/organisation/programme, provided by the British Oceanographic Data Centre and funded by the funding body."


Narrative Documents

Instrument Description

CTD Unit and Auxiliary Sensors

A Sea-Bird Electronics SBE 19plus SEACAT CTD unit was used. Water samples were collected with a Knudsen reversing bottle, which was attached to wire 1m above the CTD. The CTD unit included the following sensors.

Sensor Manufacturer Model Serial number Calibration date
Pressure Sea-Bird   6028 2008-02-28
Temperature Sea-Bird   6028 2008-02-28
Conductivity Sea-Bird   6028 2008-02-13
Fluorometer WetLabs ECO FLNTU 0947 2008-03-05

Sea-Bird SBE 19 and SBE 19plus SEACAT Profiler CTDs

The SBE 19 SEACAT Profiler is a self-contained, battery powered, pumped CTD system designed to measure conductivity, temperature, and pressure in marine or fresh water environments to depths of 10,500 meters. It was replaced by the SBE 19 plus model in 2001. An updated version of this instrument is the SBE 19 plus V2, which incorporates an electronics upgrade and additional features, with six differentially amplified A/D input channels, one RS-232 data input channel, and 64 MB FLASH memory.

The standard CTD unit comes with a plastic housing (rated to 600 m), although this can be replaced by titanium housing for depths up to 7000 m. It is typically used for CTD profiling although a conversion kit is available for mooring deployments. The CTD can also be attached to an SBE 36 CTD Deck Unit and Power/Data Interface Module (PDIM) for real-time operation on single-core armored cable up to 10,000 m.

Specifications

Parameter SBE 19 SBE 19 plus
Temperature

Range: -5 to +35 °C

Accuracy: 0.01 °C

Resolution: 0.001 °C

Calibration: +1 to +32 °C*

Range: -5 to +35 °C

Accuracy: 0.005 °C

Resolution: 0.0001 °C

Calibration: +1 to +32 °C*

Conductivity

Range: 0 to 7 S m -1 (0 to 70 mmho cm -1 )

Accuracy: 0.001 S m -1

Resolution: 0.0001 S m -1

Calibration: 0 to 7 S m -1 . Physical calibration over the range 1.4 - 6 S m -1 *

Range: 0 to 9 Sm -1

Accuracy: 0.0005

Resolution: 0.00005 (most oceanic waters, resolves 0.4 ppm in salinity); 0.00007 (high salinity waters, resolves 0.4 ppm in salinity); 0.00001 (fresh waters, resolves 0.1 ppm in salinity)

Calibration: 0 to 9 S m -1 . Physical calibration over the range 1.4 - 6 S m -1 *

Strain gauge pressure sensor

Range: 0 to100, 150, 300, 500, 1000, 1500, 3000, 5000, 10000 or 15000 psia

Accuracy: 0.25% of full scale range (100 - 1500 psia); 0.15% of full scale range (3000 - 15000 psia)

Resolution: 0.015% of full scale

Calibration: 0 to full scale in 20% steps

Range: 0 to 20, 100, 350, 1000, 2000, 3500 or 7000 m

Accuracy: 0.1% of full scale range

Resolution: 0.002% of full scale range

Calibration: ambient pressure to full scale range in 5 steps

*Measurements outside this range may be at slightly reduced accuracy due to extrapolation errors.

Options and accessories

Additional sensors can be attached to the CTD, including:

The standard SBE 5M pump may be replaced by an SBE 5P (plastic housing) or 5T (titanium housing) pump for use with dissolved oxygen and/or other pumped sensors. Further details can be found in the manufacturer's SBE 19 plus V2 instrument specification or the SBE 19 and SBE 19 plus user guides.

WETLabs ECO FLNTU fluorescence and turbidity sensor

The Environmental Characterization Optics (ECO) Fluorometer and Turbidity (FLNTU) sensor is a dual wavelength, single-angle instrument that simultaneously determines chlorophyll fluorescence and turbidity. It is easily integrated in CTD packages and provides a reliable turbidity measurement that is not affected by Colored Dissolved Organic Matter (CDOM) concentration.

The FLNTU can operate continuously or periodically and has two different types of connectors to output the data. There are 5 other models that operate the same way as this instrument but have slight differences, as stated below:

Specifications

Temperature range 0 to 30°C
Depth rating

600 m (standard)

6000 m (deep)

Turbidity
Wavelength 700 nm
Sensitivity 0.01 NTU
Typical range 0.01 to 25 NTU
Fluorescence
Wavelength 470 nm (excitation), 695 nm (emission)
Sensitivity 0.01 µg L -1
Typical range 0.01 to 50 µg L -1
Linearity 99% R 2

Further details can be found in the manufacturer's specification sheet .

BODC Processing

Data were received by BODC in one ASCII format file that was subsequently split into 52 separate files, one for each CTD profile. The series were reformatted to the internal QXF format using BODC transfer function 340. Sample calibrations were applied to the conductivity data. The following table details mapping of variables to BODC parameter codes.

Original parameter name Original Units Description BODC Parameter Code BODC Units Comments
Pressure Decibars Pressure exerted by the water column PRESPR01 Decibars  
Temperature °C Temperature of the water column TEMPST01 °C  
Conductivity mS cm -1 Electrical conductivity of the water column calibrated against independent measurements CNCLCCI1 S m -1 Conversion by transfer (mS cm -1 x 0.1). Sample calibrations applied by transfer.
Salinity   Salinity of the water column PSALST01 Dimensionless Derived by transfer using UNESCO 1983 algorithm
Fluorescence µg l -1 In-situ fluorescence CPHLPM01 mg m -3  
Turbidity Nephelometric Turbidity Unit Turbidity of the water column TURBXXXX Nephelometric Turbidity Unit  

Following transfer to QXF, the data were screened using BODC's in-house visualisation software, EDSERPLO. Any data considered as suspect were flagged. Flags from the originator marking suspect data were retained during transfer.

Originator's Data Processing

Sampling Strategy

A total of 52 CTD casts were performed on FRV Scotia cruise 0209S (26 January 2009 - 17 February 2009) around the North Sea and to the west of Orkney and Shetland. The data were collected between 11:15 hours on 26 January 2009 and 06:31 hours on 15 February 2009.

Water samples were collected in order to obtain independent salinity measurements. The sample data were used to derive calibrations for the conductivity profiles collected by the CTD.

Data Processing

The raw CTD data files were processed through the SeaBird Electronics SeaSoft data processing software following standard procedures. The originators used in-house interactive visual display editing software to edit out individual spikes in the primary temperature and conductivity channels. In addition, a low-pass filter (Sy 1985) was applied to particularly noisy data. An ASCII file was generated for each CTD cast and all files from a cruise were concatenated into one ASCII file which was submitted to BODC.

Sy A., 1985. An alternative editing technique for oceanographic data. Deep Sea Research Part A: Oceanographic Research Papers, 32 (12), 1591-1599.

Field Calibrations

Independent salinity samples, obtained from the sample bottle and spread throughout the cruise, were used to calibrate the CTD conductivity data. Outlying points were discarded, and 88 data points were used to derive the calibrations. The sample analyses yielded a straight line conductivity calibration of the form y = mx + c, where m = 1.000316 and c = 0.005278.

Parameter Value of m (y=mx+c) Value of c (y=mx+c) Equation
Conductivity 1.0000316 0.005278 C(cal) = 1.000316C(obs) + 0.005278

The calibrated and uncalibrated data were submitted to BODC, who applied the appropriate corrections.


Project Information


No Project Information held for the Series

Data Activity or Cruise Information

Cruise

Cruise Name 0209S
Departure Date 2009-01-26
Arrival Date 2009-02-17
Principal Scientist(s)Kenneth A Coull (Fisheries Research Services Aberdeen Marine Laboratory)
Ship FRV Scotia

Complete Cruise Metadata Report is available here


Fixed Station Information


No Fixed Station Information held for the Series


BODC Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
Blank Unqualified
< Below detection limit
> In excess of quoted value
A Taxonomic flag for affinis (aff.)
B Beginning of CTD Down/Up Cast
C Taxonomic flag for confer (cf.)
D Thermometric depth
E End of CTD Down/Up Cast
G Non-taxonomic biological characteristic uncertainty
H Extrapolated value
I Taxonomic flag for single species (sp.)
K Improbable value - unknown quality control source
L Improbable value - originator's quality control
M Improbable value - BODC quality control
N Null value
O Improbable value - user quality control
P Trace/calm
Q Indeterminate
R Replacement value
S Estimated value
T Interpolated value
U Uncalibrated
W Control value
X Excessive difference

SeaDataNet Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
0 no quality control
1 good value
2 probably good value
3 probably bad value
4 bad value
5 changed value
6 value below detection
7 value in excess
8 interpolated value
9 missing value
A value phenomenon uncertain