Search the data

Metadata Report for BODC Series Reference Number 605035


Metadata Summary

Data Description

Data Category Hydrography time series at depth
Instrument Type
NameCategories
Aanderaa thermistor chain  water temperature sensor; thermistor chains
Instrument Mounting subsurface mooring
Originating Country United Kingdom
Originator -
Originating Organization Proudman Oceanographic Laboratory (now National Oceanography Centre, Liverpool)
Processing Status banked
Online delivery of data Download available - Ocean Data View (ODV) format
Project(s) North Sea Project 1987-1992
 

Data Identifiers

Originator's Identifier TC1608.C49DT
BODC Series Reference 605035
 

Time Co-ordinates(UT)

Start Time (yyyy-mm-dd hh:mm) 1989-04-01 18:11
End Time (yyyy-mm-dd hh:mm) 1989-04-30 18:58
Nominal Cycle Interval -
 

Spatial Co-ordinates

Latitude 53.49930 N ( 53° 30.0' N )
Longitude 2.99280 E ( 2° 59.6' E )
Positional Uncertainty 0.05 to 0.1 n.miles
Minimum Sensor or Sampling Depth 5.0 m
Maximum Sensor or Sampling Depth 5.0 m
Minimum Sensor or Sampling Height 26.0 m
Maximum Sensor or Sampling Height 26.0 m
Sea Floor Depth 31.0 m
Sea Floor Depth Source -
Sensor or Sampling Distribution Scattered at fixed depths - The sensors are scattered with respect to depth but each remains effectively at the same depth for the duration of the series
Sensor or Sampling Depth Datum Sea floor reference - Depth measured as a height above sea floor but converted into a depth relative to the sea surface according to the same datum as used for sea floor depth (applicable to instrument depths not bathymetric depths)
Sea Floor Depth Datum Instantaneous - Depth measured below water line or instantaneous water body surface
 

Parameters

BODC CODERankUnitsTitle
AADYAA011DaysDate (time from 00:00 01/01/1760 to 00:00 UT on day)
AAFDZZ011DaysTime (time between 00:00 UT and timestamp)
TEMPTC011Degrees CelsiusTemperature of the water body by in-situ thermistor

Definition of Rank

  • Rank 1 is a one-dimensional parameter
  • Rank 2 is a two-dimensional parameter
  • Rank 0 is a one-dimensional parameter describing the second dimension of a two-dimensional parameter (e.g. bin depths for moored ADCP data)

Problem Reports

No Problem Report Found in the Database

Data Quality Report

Data are available for the 5.0m thermistor bead only. A visual inspection indicates generally good data.

A comparison between these data and the CTD temperature sensor data collected at the same time was also conducted. The CTD cast number with which the comparison was made is also given, this will be the CTD taken close to the time of deployment and/or recovery of the thermistor chain.

The difference between the two temperatures is listed below:

  CTD D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12
Deployment 1645 -0.162                      
Recovery 1787 -0.143                      

where D1 (°C) = CTD temperature - thermistor bead 1 temperature, D2 (°C) = CTD temperature - thermistor bead 2 temperature etc. Thermistor bead 1 is the top bead (i.e. the one attached to the logger) and thermistor bead 12 is the bottom bead.


Data Access Policy

Open Data supplied by Natural Environment Research Council (NERC)

You must always use the following attribution statement to acknowledge the source of the information: "Contains data supplied by Natural Environment Research Council."


Narrative Documents

Aanderaa Thermistor Chain

Instrumentation

The thermistor string comprises 11 sensors electrically connected to a logger. The sensors are equally spaced along the string; string lengths range from 10m to 400m. Sensors used are Fenwal 2K iso-curve thermistors (type GB32JM19) with time constant of approximately 3.5min for 63pcent of step change. The thermistors have identical calibration curves to within ±0.1 °C.

Standard temperature ranges are: low range (-2.46 to 21.48 °C), high range (10.08 to 36.00 °C), wide range (-0.34 to 32.17 °C). A resistor, accurate to ±0.025deg C, within the logger is used to select the range.

Calibrations

The calibration formula, corresponding to the temperature range chosen, converts the logger reading N to degrees C with an accuracy of ±0.05deg C, The worst accumulated error (taking into account the accuracy of the formula, the thermistor and the resistor) is ±0.175 °C. These errors can be reduced by carrying out temperature calibrations at 0 °C. This can give an accuracy of ±0.05 °C. The theoretical limit of accuracy is ±0.0125 °C, approx. To approach this accuracy better interpolation formulae and frequent calibrations are required.

The data are logged either by Aanderaa TR loggers or by SeaData loggers (which incorporate a temperature sensor and hence record 12 channels).

General Data Screening carried out by BODC

BODC screen both the series header qualifying information and the parameter values in the data cycles themselves.

Header information is inspected for:

  • Irregularities such as unfeasible values
  • Inconsistencies between related information, for example:
    • Times for instrument deployment and for start/end of data series
    • Length of record and the number of data cycles/cycle interval
    • Parameters expected and the parameters actually present in the data cycles
  • Originator's comments on meter/mooring performance and data quality

Documents are written by BODC highlighting irregularities which cannot be resolved.

Data cycles are inspected using time or depth series plots of all parameters. Currents are additionally inspected using vector scatter plots and time series plots of North and East velocity components. These presentations undergo intrinsic and extrinsic screening to detect infeasible values within the data cycles themselves and inconsistencies as seen when comparing characteristics of adjacent data sets displaced with respect to depth, position or time. Values suspected of being of non-oceanographic origin may be tagged with the BODC flag denoting suspect value; the data values will not be altered.

The following types of irregularity, each relying on visual detection in the plot, are amongst those which may be flagged as suspect:

  • Spurious data at the start or end of the record.
  • Obvious spikes occurring in periods free from meteorological disturbance.
  • A sequence of constant values in consecutive data cycles.

If a large percentage of the data is affected by irregularities then a Problem Report will be written rather than flagging the individual suspect values. Problem Reports are also used to highlight irregularities seen in the graphical data presentations.

Inconsistencies between the characteristics of the data set and those of its neighbours are sought and, where necessary, documented. This covers inconsistencies such as the following:

  • Maximum and minimum values of parameters (spikes excluded).
  • The occurrence of meteorological events.

This intrinsic and extrinsic screening of the parameter values seeks to confirm the qualifying information and the source laboratory's comments on the series. In screening and collating information, every care is taken to ensure that errors of BODC making are not introduced.


Project Information

North Sea Project

The North Sea Project (NSP) was the first Marine Sciences Community Research project of the Natural Environment Research Council (NERC). It evolved from a NERC review of shelf sea research, which identified the need for a concerted multidisciplinary study of circulation, transport and production.

The ultimate aim of the NERC North Sea Project was the development of a suite of prognostic water quality models to aid management of the North Sea. To progress towards water quality models, three intermediate objectives were pursued in parallel:

  • Production of a 3-D transport model for any conservative passive constituent, incorporating improved representations of the necessary physics - hydrodynamics and dispersion;
  • Identifying and quantifying non-conservative processes - sources and sinks determining the cycling and fate of individual constituents;
  • Defining a complete seasonal cycle as a database for all the observational studies needed to formulate, drive and test models.

Proudman Oceanographic Laboratory hosted the project, which involved over 200 scientists and support staff from NERC and other Government funded laboratories, as well as seven universities and polytechnics.

The project ran from 1987 to 1992, with marine field data collection between April 1988 and October 1989. One shakedown (CH28) and fifteen survey cruises (Table 1), each lasting 12 days and following the same track, were repeated monthly. The track selected covered the summer-stratified waters of the north and the homogeneous waters in the Southern Bight in about equal lengths together with their separating frontal band from Flamborough head to Dogger Bank, the Friesian Islands and the German Bight. Mooring stations were maintained at six sites for the duration of the project.

Table 1: Details of NSP Survey Cruises on RRS Challenger
Cruise No. Date
CH28 29/04/88 - 15/05/88
CH33 04/08/88 - 16/08/88
CH35 03/09/88 - 15/09/88
CH37 02/10/88 - 14/10/88
CH39 01/11/88 - 13/11/88
CH41 01/12/88 - 13/12/88
CH43 30/12/88 - 12/01/89
CH45 28/01/89 - 10/02/89
CH47 27/02/89 - 12/03/89
CH49 29/03/89 - 10/04/89
CH51 27/04/89 - 09/05/89
CH53 26/05/89 - 07/06/89
CH55 24/06/89 - 07/07/89
CH57 24/07/89 - 06/08/89
CH59 23/08/89 - 04/09/89
CH61 21/09/89 - 03/10/89

Alternating with the survey cruises were process study cruises (Table 2), which investigated some particular aspect of the science of the North Sea. These included fronts (nearshore, circulation and mixing), sandwaves and sandbanks, plumes (Humber, Wash, Thames and Rhine), resuspension, air-sea exchange, primary productivity and blooms/chemistry.

Table 2: Details of NSP Process cruises on RRS Challenger
Cruise No. Date Process
CH34 18/08/88 - 01/09/88 Fronts - nearshore
CH36 16/09/88 - 30/09/88 Fronts - mixing
CH56 08/07/89 - 22/07/89 Fronts - circulation
CH58 07/08/89 - 21/08/89 Fronts - mixing
CH38 24/10/88 - 31/10/88 Sandwaves
CH40 15/11/88 - 29/11/88 Sandbanks
CH42 15/12/88 - 29/12/88 Plumes/Sandbanks
CH46 12/02/89 - 26/02/89 Plumes/Sandwaves
CH44 13/01/89 - 27/01/89 Resuspension
CH52 11/05/89 - 24/05/89 Resuspension
CH60 06/09/89 - 19/09/89 Resuspension
CH48 13/03/89 - 27/03/89 Air/sea exchanges
CH62 05/10/89 - 19/10/89 Air/sea exchanges
CH50 12/04/89 - 25/04/89 Blooms/chemistry
CH54 09/06/89 - 22/06/89 Production

In addition to the main data collection period, a series of cruises took place between October 1989 and October 1990 that followed up work done on previous cruises (Table 3). Process studies relating to blooms, plumes (Humber, Wash and Rhine), sandwaves and the flux of contaminants through the Dover Strait were carried out as well as two `survey' cruises.

Table 3: Details of NSP `Follow up' cruises on RRS Challenger
Cruise No. Date Process
CH62A 23/10/89 - 03/11/89 Blooms
CH64 03/04/90 - 03/05/90 Blooms
CH65 06/05/90 - 17/05/90 Humber plume
CH66A 20/05/90 - 31/05/90 Survey
CH66B 03/06/90 - 18/06/90 Contaminants through Dover Strait
CH69 26/07/90 - 07/08/90 Resuspension/Plumes
CH72A 20/09/90 - 02/10/90 Survey
CH72B 04/10/90 - 06/10/90 Sandwaves/STABLE
CH72C 06/10/90 - 19/10/90 Rhine plume

The data collected during the observational phase of the North Sea Project comprised one of the most detailed sets of observations ever undertaken in any shallow shelf sea at that time.


Data Activity or Cruise Information

Data Activity

Start Date (yyyy-mm-dd) 1989-04-01
End Date (yyyy-mm-dd) 1989-04-30
Organization Undertaking ActivityProudman Oceanographic Laboratory (now National Oceanography Centre, Liverpool)
Country of OrganizationUnited Kingdom
Originator's Data Activity IdentifierPOLRIG#C49DT
Platform Categorysubsurface mooring

North Sea Project POLRIG#C49DT

The thermistor chain mooring was deployed as part of the North Sea Project Survey at Site D.

A thermistor chain, incorporating eleven thermistor beads, was moored as a single point mooring beneath a toroidal buoy. The data logger was positioned just above the chain and also incorporated a thermistor bead. The beads were positioned at the following nominal depths below the surface of the water (the top bead is the one incorporated in the logger):

Data are only available from the thermistor bead attached to the logger at depth 5.0m

The accuracy of the thermistor beads was ±0.05°C.

Mooring Position 53° 29.96'N, 02° 59.57'E
Water Depth 31.0m
Instrument Aanderaa Thermistor Chain 1608
Parameters Measured Temperature

Fixed Station Information

Fixed Station Information

Station NameNSP Survey D and CTD Site BB
CategoryOffshore location
Latitude53° 30.00' N
Longitude3° 0.00' E
Water depth below MSL30.0 m

North Sea Project Survey Mooring Site D and CTD Site BB

Site D was one of six fixed stations where moorings were deployed during the North Sea Project Survey. This location is also one of 123 North Sea Project CTD Sites.

The site was characterised by moderate tidal currents, up to a maximum of 1.0 m/s.

The rigs deployed here lie within a box bounded by 53.488N 2.988E at the southwest corner and 53.503N 3.012E at the northeast corner. Magnetic variation at this site was 3.7° west.

Site D deployment history is summarised below:

Rig ID Meter type Meter height Start date Data return (days) Comment
C33DC

ADCP

CM

0.8m

0.8m

07/08/88

07/08/88

0.0

29.8

Data corrupt

N/A

C33DT THCH   07/08/88 30 Data 'noisy' from 29 August 1988
C35DC

ADCP

CM

0.8m

0.8m

06/09/88

06/09/88

25.2

28.7

 
C35DT THCH   06/09/88 29 Data for 5.0m thermistor bead only
C37DC

ADCP

CM

0.8m

0.8m

05/10/88

05/10/88

0.0

65.6

Rig trawled, ADCP lost

Rig trawled, CM recovered

C39DC

ADCP

CM

0.8m

0.8m

04/11/88

04/11/88

37.3

37.9

 
C41DC

ADCP

CM

0.8m

0.8m

12/12/88

12/12/88

11.6

43.6

 
C45DC

ADCP

CM

0.8m

0.8m

31/01/89

31/01/89

32.3

32.6

 
C47DC ADCP 0.8m 04/03/89 17.8  
C49DC

ADCP

CM

0.8m

0.8m

01/04/89

01/04/89

28.6

28.9

 
C49DT THCH   01/04/89 29 Data for 5.0m thermistor bead only
C51DC

ADCP

CM

0.8m

0.8m

30/04/89

30/04/89

26.7

28.8

 
C51DT THCH   30/04/89 29 Data for 5.0m thermistor bead only
C53DC ADCP 0.8m 29/04/89 28.7  
C53DT THCH   29/05/89 30 Good data
C55DC

ADCP

CM

0.8m

0.8m

27/06/89

27/06/89

12.8

30.1

 
C55DT THCH   27/06/89 31 Good data
C57DC

ADCP

CM

0.8m

0.8m

27/07/89

27/07/89

29.7

29.7

 
C57DT THCH   27/07/89 30 Good data
C59DC

ADCP

CM

0.8m

0.8m

26/08/89

26/08/89

28.8

28.8

 
C59DT THCH   26/08/89 28 Good data
C66DC CM 0.8m 24/05/90 23.0  

ADCP = Acoustic Doppler Current Profiler
CM = Current Meter (Aanderaa or S4)
THCH = Thermistor Chain

Related Fixed Station activities are detailed in Appendix 1


BODC Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
Blank Unqualified
< Below detection limit
> In excess of quoted value
A Taxonomic flag for affinis (aff.)
B Beginning of CTD Down/Up Cast
C Taxonomic flag for confer (cf.)
D Thermometric depth
E End of CTD Down/Up Cast
G Non-taxonomic biological characteristic uncertainty
H Extrapolated value
I Taxonomic flag for single species (sp.)
K Improbable value - unknown quality control source
L Improbable value - originator's quality control
M Improbable value - BODC quality control
N Null value
O Improbable value - user quality control
P Trace/calm
Q Indeterminate
R Replacement value
S Estimated value
T Interpolated value
U Uncalibrated
W Control value
X Excessive difference

SeaDataNet Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
0 no quality control
1 good value
2 probably good value
3 probably bad value
4 bad value
5 changed value
6 value below detection
7 value in excess
8 interpolated value
9 missing value
A value phenomenon uncertain
Q value below limit of quantification

Appendix 1: NSP Survey D and CTD Site BB

Related series for this Fixed Station are presented in the table below. Further information can be found by following the appropriate links.

If you are interested in these series, please be aware we offer a multiple file download service. Should your credentials be insufficient for automatic download, the service also offers a referral to our Enquiries Officer who may be able to negotiate access.

Series IdentifierData CategoryStart date/timeStart positionCruise
781088CTD or STD cast1988-05-01 17:33:0052.65333 N, 3.553 ERRS Challenger CH28
782123CTD or STD cast1988-05-04 19:53:0055.5 N, 6.7035 ERRS Challenger CH28
769201CTD or STD cast1988-08-07 17:49:0053.49683 N, 3.00867 ERRS Challenger CH33
580199Hydrography time series at depth1988-08-07 18:20:0153.5 N, 3.0 ENot applicable
605047Hydrography time series at depth1988-08-07 18:50:3853.4943 N, 2.999 ENot applicable
783280CTD or STD cast1988-09-06 13:25:0053.50217 N, 2.999 ERRS Challenger CH35
580292Hydrography time series at depth1988-09-06 15:30:0053.5 N, 2.995 ENot applicable
605096Hydrography time series at depth1988-09-06 15:31:5253.5002 N, 2.998 ENot applicable
604241Currents -subsurface Eulerian1988-09-07 05:19:1753.5 N, 2.995 ENot applicable
784511CTD or STD cast1988-10-05 04:53:0053.4945 N, 3.00433 ERRS Challenger CH37
580255Hydrography time series at depth1988-10-05 09:19:5953.4978 N, 2.9965 ENot applicable
821535CTD or STD cast1988-11-04 11:11:0053.50033 N, 3.00033 ERRS Challenger CH39
580243Hydrography time series at depth1988-11-04 15:29:5953.4968 N, 2.9987 ENot applicable
604228Currents -subsurface Eulerian1988-11-04 15:39:2653.4968 N, 2.9987 ENot applicable
785587CTD or STD cast1988-12-12 14:35:0053.52067 N, 2.98117 ERRS Challenger CH41
580218Hydrography time series at depth1988-12-12 16:50:0053.4968 N, 2.9993 ENot applicable
604161Currents -subsurface Eulerian1988-12-12 16:59:2553.4968 N, 2.9993 ENot applicable
786308CTD or STD cast1989-01-04 09:35:0053.47967 N, 3.00983 ERRS Challenger CH43
791292CTD or STD cast1989-01-31 17:44:0053.51017 N, 2.98983 ERRS Challenger CH45
1859659Water sample data1989-01-31 17:46:0053.51016 N, 2.98991 ERRS Challenger CH45
580231Hydrography time series at depth1989-01-31 19:09:5953.4965 N, 3.0 ENot applicable
604173Currents -subsurface Eulerian1989-01-31 19:19:2953.4965 N, 3.0 ENot applicable
792535CTD or STD cast1989-03-02 12:02:0053.4975 N, 3.01067 ERRS Challenger CH47
1857388Water sample data1989-03-02 12:04:0053.4975 N, 3.01059 ERRS Challenger CH47
604204Currents -subsurface Eulerian1989-03-04 17:09:1753.4935 N, 3.0013 ENot applicable
794032CTD or STD cast1989-04-01 14:06:0053.514 N, 2.9925 ERRS Challenger CH49
1858712Water sample data1989-04-01 14:09:0053.51399 N, 2.99249 ERRS Challenger CH49
794044CTD or STD cast1989-04-01 17:01:0053.49633 N, 2.999 ERRS Challenger CH49
1858724Water sample data1989-04-01 17:04:0053.49638 N, 2.99908 ERRS Challenger CH49
580187Hydrography time series at depth1989-04-01 20:30:0053.489 N, 3.0 ENot applicable
604136Currents -subsurface Eulerian1989-04-01 20:39:2053.489 N, 3.0 ENot applicable
604216Currents -subsurface Eulerian1989-04-30 18:39:2853.4885 N, 2.9882 ENot applicable
591831Currents -subsurface Eulerian1989-04-30 18:40:0053.4885 N, 2.9882 ENot applicable
605084Hydrography time series at depth1989-04-30 20:03:4753.4985 N, 2.9933 ENot applicable
794972CTD or STD cast1989-04-30 20:15:0053.50133 N, 2.99867 ERRS Challenger CH51
1860833Water sample data1989-04-30 20:20:0053.50127 N, 2.99866 ERRS Challenger CH51
796284CTD or STD cast1989-05-29 12:27:0053.5005 N, 3.00133 ERRS Challenger CH53
1863321Water sample data1989-05-29 12:30:0053.50049 N, 3.00138 ERRS Challenger CH53
605072Hydrography time series at depth1989-05-29 16:16:1553.5017 N, 3.01 ENot applicable
604197Currents -subsurface Eulerian1989-05-29 16:29:2753.5002 N, 3.0053 ENot applicable
604185Currents -subsurface Eulerian1989-06-27 09:55:0053.5028 N, 3.0043 ENot applicable
605060Hydrography time series at depth1989-06-27 09:55:0053.4988 N, 3.0078 ENot applicable
591806Currents -subsurface Eulerian1989-06-27 10:00:0053.5028 N, 3.0043 ENot applicable
798647CTD or STD cast1989-06-27 10:03:0053.4985 N, 3.015 ERRS Challenger CH55
798961CTD or STD cast1989-07-27 14:50:0053.49783 N, 3.00067 ERRS Challenger CH57
1245817Water sample data1989-07-27 14:53:0053.49785 N, 3.0006 ERRS Challenger CH57
1709281Water sample data1989-07-27 14:53:0053.49785 N, 3.0006 ERRS Challenger CH57
1864613Water sample data1989-07-27 14:53:0053.49785 N, 3.0006 ERRS Challenger CH57
605059Hydrography time series at depth1989-07-27 15:46:5253.4932 N, 3.0055 ENot applicable
604148Currents -subsurface Eulerian1989-07-27 15:49:1853.4972 N, 3.0117 ENot applicable
580206Hydrography time series at depth1989-07-27 15:50:0053.4972 N, 3.0117 ENot applicable
801466CTD or STD cast1989-08-26 09:13:0053.4925 N, 3.00733 ERRS Challenger CH59
1856164Water sample data1989-08-26 09:16:0053.49245 N, 3.0073 ERRS Challenger CH59
605103Hydrography time series at depth1989-08-26 10:03:4553.495 N, 3.01 ENot applicable
604253Currents -subsurface Eulerian1989-08-26 10:19:2453.495 N, 3.01 ENot applicable
591843Currents -subsurface Eulerian1989-08-26 10:20:0053.495 N, 3.01 ENot applicable
800149CTD or STD cast1989-09-24 05:09:0053.499 N, 2.99967 ERRS Challenger CH61
1854919Water sample data1989-09-24 05:15:0053.49908 N, 2.99972 ERRS Challenger CH61
802758CTD or STD cast1990-05-23 22:19:0053.50033 N, 2.99433 ERRS Challenger CH66A
591818Currents -subsurface Eulerian1990-05-24 06:30:0053.4982 N, 3.0058 ENot applicable
802802CTD or STD cast1990-05-24 06:42:0053.50433 N, 3.0045 ERRS Challenger CH66A
827893CTD or STD cast1990-06-16 14:47:0053.49633 N, 3.01183 ERRS Challenger CH66B
804789CTD or STD cast1990-09-26 03:55:0053.49817 N, 2.99583 ERRS Challenger CH72A
829537CTD or STD cast1990-10-14 06:45:0053.49683 N, 3.00233 ERRS Challenger CH72C