Search the data

Metadata Report for BODC Series Reference Number 883883


Metadata Summary

Data Description

Data Category CTD or STD cast
Instrument Type
NameCategories
Sea-Bird SBE 911plus CTD  CTD; water temperature sensor; salinity sensor
Instrument Mounting research vessel
Originating Country Belgium
Originator Prof Roland Wollast
Originating Organization Free University of Brussels, Laboratory of Chemical Oceanography and Water Geochemistry
Processing Status banked
Online delivery of data Download available - Ocean Data View (ODV) format
Project(s) OMEX I
 

Data Identifiers

Originator's Identifier GC05B
BODC Series Reference 883883
 

Time Co-ordinates(UT)

Start Time (yyyy-mm-dd hh:mm) 1993-09-26 09:08
End Time (yyyy-mm-dd hh:mm) -
Nominal Cycle Interval 2.0 decibars
 

Spatial Co-ordinates

Latitude 49.11850 N ( 49° 7.1' N )
Longitude 13.42367 W ( 13° 25.4' W )
Positional Uncertainty 0.0 to 0.01 n.miles
Minimum Sensor or Sampling Depth 4.96 m
Maximum Sensor or Sampling Depth 1577.4 m
Minimum Sensor or Sampling Height -
Maximum Sensor or Sampling Height -
Sea Floor Depth -
Sea Floor Depth Source -
Sensor or Sampling Distribution Variable common depth - All sensors are grouped effectively at the same depth, but this depth varies significantly during the series
Sensor or Sampling Depth Datum Instantaneous - Depth measured below water line or instantaneous water body surface
Sea Floor Depth Datum -
 

Parameters

BODC CODERankUnitsTitle
DOXYPR011Micromoles per litreConcentration of oxygen {O2 CAS 7782-44-7} per unit volume of the water body [dissolved plus reactive particulate phase] by in-situ Beckmann probe
OXYSBB011PercentSaturation of oxygen {O2 CAS 7782-44-7} in the water body [dissolved plus reactive particulate phase] by in-situ Beckmann probe and computation from concentration using Benson and Krause algorithm
POTMCV011Degrees CelsiusPotential temperature of the water body by computation using UNESCO 1983 algorithm
PRESPR011DecibarsPressure (spatial coordinate) exerted by the water body by profiling pressure sensor and correction to read zero at sea level
PSALST011DimensionlessPractical salinity of the water body by CTD and computation using UNESCO 1983 algorithm
SIGTPR011Kilograms per cubic metreSigma-theta of the water body by CTD and computation from salinity and potential temperature using UNESCO algorithm
TEMPST011Degrees CelsiusTemperature of the water body by CTD or STD

Definition of Rank

  • Rank 1 is a one-dimensional parameter
  • Rank 2 is a two-dimensional parameter
  • Rank 0 is a one-dimensional parameter describing the second dimension of a two-dimensional parameter (e.g. bin depths for moored ADCP data)

Problem Reports

No Problem Report Found in the Database


Data Access Policy

Public domain data

These data have no specific confidentiality restrictions for users. However, users must acknowledge data sources as it is not ethical to publish data without proper attribution. Any publication or other output resulting from usage of the data should include an acknowledgment.

The recommended acknowledgment is

"This study uses data from the data source/organisation/programme, provided by the British Oceanographic Data Centre and funded by the funding body."


Narrative Documents

Sea-Bird Electronics SBE 911 and SBE 917 series CTD profilers

The SBE 911 and SBE 917 series of conductivity-temperature-depth (CTD) units are used to collect hydrographic profiles, including temperature, conductivity and pressure as standard. Each profiler consists of an underwater unit and deck unit or SEARAM. Auxiliary sensors, such as fluorometers, dissolved oxygen sensors and transmissometers, and carousel water samplers are commonly added to the underwater unit.

Underwater unit

The CTD underwater unit (SBE 9 or SBE 9 plus) comprises a protective cage (usually with a carousel water sampler), including a main pressure housing containing power supplies, acquisition electronics, telemetry circuitry, and a suite of modular sensors. The original SBE 9 incorporated Sea-Bird's standard modular SBE 3 temperature sensor and SBE 4 conductivity sensor, and a Paroscientific Digiquartz pressure sensor. The conductivity cell was connected to a pump-fed plastic tubing circuit that could include auxiliary sensors. Each SBE 9 unit was custom built to individual specification. The SBE 9 was replaced in 1997 by an off-the-shelf version, termed the SBE 9 plus, that incorporated the SBE 3 plus (or SBE 3P) temperature sensor, SBE 4C conductivity sensor and a Paroscientific Digiquartz pressure sensor. Sensors could be connected to a pump-fed plastic tubing circuit or stand-alone.

Temperature, conductivity and pressure sensors

The conductivity, temperature, and pressure sensors supplied with Sea-Bird CTD systems have outputs in the form of variable frequencies, which are measured using high-speed parallel counters. The resulting count totals are converted to numeric representations of the original frequencies, which bear a direct relationship to temperature, conductivity or pressure. Sampling frequencies for these sensors are typically set at 24 Hz.

The temperature sensing element is a glass-coated thermistor bead, pressure-protected inside a stainless steel tube, while the conductivity sensing element is a cylindrical, flow-through, borosilicate glass cell with three internal platinum electrodes. Thermistor resistance or conductivity cell resistance, respectively, is the controlling element in an optimized Wien Bridge oscillator circuit, which produces a frequency output that can be converted to a temperature or conductivity reading. These sensors are available with depth ratings of 6800 m (aluminium housing) or 10500 m (titanium housing). The Paroscientific Digiquartz pressure sensor comprises a quartz crystal resonator that responds to pressure-induced stress, and temperature is measured for thermal compensation of the calculated pressure.

Additional sensors

Optional sensors for dissolved oxygen, pH, light transmission, fluorescence and others do not require the very high levels of resolution needed in the primary CTD channels, nor do these sensors generally offer variable frequency outputs. Accordingly, signals from the auxiliary sensors are acquired using a conventional voltage-input multiplexed A/D converter (optional). Some Sea-Bird CTDs use a strain gauge pressure sensor (Senso-Metrics) in which case their pressure output data is in the same form as that from the auxiliary sensors as described above.

Deck unit or SEARAM

Each underwater unit is connected to a power supply and data logging system: the SBE 11 (or SBE 11 plus) deck unit allows real-time interfacing between the deck and the underwater unit via a conductive wire, while the submersible SBE 17 (or SBE 17 plus) SEARAM plugs directly into the underwater unit and data are downloaded on recovery of the CTD. The combination of SBE 9 and SBE 17 or SBE 11 are termed SBE 917 or SBE 911, respectively, while the combinations of SBE 9 plus and SBE 17 plus or SBE 11 plus are termed SBE 917 plus or SBE 911 plus.

Specifications

Specifications for the SBE 9 plus underwater unit are listed below:

Parameter Range Initial accuracy Resolution at 24 Hz Response time
Temperature -5 to 35°C 0.001°C 0.0002°C 0.065 sec
Conductivity 0 to 7 S m-1 0.0003 S m-1 0.00004 S m-1 0.065 sec (pumped)
Pressure 0 to full scale (1400, 2000, 4200, 6800 or 10500 m) 0.015% of full scale 0.001% of full scale 0.015 sec

Further details can be found in the manufacturer's specification sheet.

RV Belgica 9322 (Leg A) CTD Data Documentation

Instrumentation

The CTD profiles were taken with the SeaBird SBE9 SCTD system. The instrument has enclosed conductivity and temperature sensors supplied with water by a pump. The water inlet was at the base of the bottle rosette. When not in use, the sensors were bathed in MilliQ water. SeaBird temperature sensors are high performance, pressure protected thermistors. A dissolved oxygen sensor was also included on the rig (non-pulsed membrane).

The CTD was periodically sent for calibration to SeaBird's NWRCC facility in Washington State. An average of 4 salinity samples were taken per cast, stored in crown-corked beer bottles, and determined on Beckman salinometer using IOSDL standard seawater. The procedure has come out well in ICES intercalibration exercises. Nevertheless, the Beckman is not considered as accurate as the SeaBird: the bottle data were used as a check for instrument malfunction but not for recalibration. Similarly, temperature sensor performance was monitored against digital reversing thermometers but not recalibrated.

Dissolved oxygen performance was monitored against Winkler titration, done by MUMM or University of Liege, and recalibrated by polynomial - usually linear - if required.

A SeaBird rosette sampler fitted with 12, 10 litre Niskin or Go/Flo bottles was mounted above the frame. The bases of the bottles were level with the pressure sensor with their tops 0.8 m above it. Digital thermometers on water bottles were placed 0.63 m above the CTD temperature sensor.

Data Acquisition

The CTD sampled at 24Hz but this was automatically reduced to 2Hz by the deck unit. The data were logged on a PC using the SeaBird SEASAVE program.

The CTD was lowered at 0.8-1 m/s. On the upcast, the hauling rate was approximately the same, but is reduced on approach to a bottle firing depth to minimise wake interference.

Post-Cruise Processing

The SeaBird DATCNV program was used for the conversion from raw binary data into calibrated data in ASCII format that were supplied to BODC.

Reformatting

Data supplied to BODC were binned to 1 m with an independent variable of depth in metres. This was converted to decibars using an inverse (by iteration) of the Saunders and Fofonoff algorithm. The algorithm was checked against data from cruise BG9412 that were supplied with both pressure and depth channels. An empirical examination showed that pressure could be computed from the depth to an accuracy of 0.0001db assuming a latitude of 50 °N. This latitude was therefore assumed from the conversion of the BG9322 depths to pressures.

The data were converted into the BODC internal format to allow the use of in-house software tools, notably the workstation graphics editor. In addition to reformatting, the transfer program applied the following modifications to the data:

Temperature has been converted from ITS68 to ITS90 by dividing the values by 1.00024.

Dissolved oxygen was converted from ml/l to µM by multiplying the values by 44.66.

Editing

Reformatted CTD data were transferred onto a high speed graphics workstation. Using a custom in-house graphics editor, the downcasts was manually flagged. The flagging involved marking the top and the bottom of the downcast. The top was set to the point where salinity increased from near zero value to a realistic value for sea water. Additionally, any obvious spikes were manually flagged 'suspect'. In this way none of the original data values were edited or deleted.

Once screened on the workstation, the CTD downcasts (25) were loaded into a database under the Oracle relational database management system and later migrated to the National Oceanographic Database.

Calibration

The pressures, temperatures and salinities supplied are believed to be accurate. MUMM reported that the dissolved oxygen data showed reasonable agreement with the bottle data set from University of Liege. However, for the sake of internal consistency, the dissolved oxygen sensor performance was calibrated against 97 water bottle samples analysed following the classical Winkler titration procedure.

The recalibration equation obtained was:

Ocorrected = Oobserved * 0.83 + 52.78 (r2 = 0.89)

and this has been applied to the data.

Data Reduction

Once all screening and calibration procedures were completed, the data set were binned to 2db (casts deeper than 100db) or 1db (casts shallower than 100db). The binning algorithm excluded any data points flagged suspect and attempted linear interpolation over gaps up to 3 bins wide. If any gaps larger than this were encountered, the data in the gaps were set null.

Downcast values corresponding to the bottle firing depths were incorporated into the database. Oxygen saturations have been computed using the algorithm of Benson and Krause (1984).

References

Benson, B.B., Krause D. (1984). The concentration and isotopic fractionation of oxygen dissolved in fresh water and sea water in equilibrium with the atmosphere. Limnol.Oceanogr. 29 pp.620-632.

Fofonoff, N.P., Millard, R.C. (1982). Algorithms for computation of fundamental properties of seawater. UNESCO Technical Papers in Marine Science. 44.


Project Information

Ocean Margin EXchange (OMEX) I

Introduction

OMEX was a European multidisciplinary oceanographic research project that studied and quantified the exchange processes of carbon and associated elements between the continental shelf of western Europe and the open Atlantic Ocean. The project ran in two phases known as OMEX I (1993-1996) and OMEX II - II (1997-2000), with a bridging phase OMEX II - I (1996-1997). The project was supported by the European Union under the second and third phases of its MArine Science and Technology Programme (MAST) through contracts MAS2-CT93-0069 and MAS3-CT97-0076. It was led by Professor Roland Wollast from Université Libre de Bruxelles, Belgium and involved more than 100 scientists from 10 European countries.

Scientific Objectives

The aim of the Ocean Margin EXchange (OMEX) project was to gain a better understanding of the physical, chemical and biological processes occurring at the ocean margins in order to quantify fluxes of energy and matter (carbon, nutrients and other trace elements) across this boundary. The research culminated in the development of quantitative budgets for the areas studied using an approach based on both field measurements and modeling.

OMEX I (1993-1996)

The first phase of OMEX was divided into sub-projects by discipline:

  • Physics
  • Biogeochemical Cycles
  • Biological Processes
  • Benthic Processes
  • Carbon Cycling and Biogases

This emphasises the multidisciplinary nature of the research.

The project fieldwork focussed on the region of the European Margin adjacent to the Goban Spur (off the coast of Brittany) and the shelf break off Tromsø, Norway. However, there was also data collected off the Iberian Margin and to the west of Ireland. In all a total of 57 research cruises (excluding 295 Continuous Plankton Recorder tows) were involved in the collection of OMEX I data.

Data Availability

Field data collected during OMEX I have been published by BODC as a CD-ROM product, entitled:

  • OMEX I Project Data Set (two discs)

Further descriptions of this product and order forms may be found on the BODC web site.

The data are also held in BODC's databases and subsets may be obtained by request from BODC.


Data Activity or Cruise Information

Cruise

Cruise Name BG9322A
Departure Date 1993-09-22
Arrival Date 1993-09-29
Principal Scientist(s)Roland Wollast (Free University of Brussels, Laboratory of Chemical Oceanography and Water Geochemistry)
Ship RV Belgica

Complete Cruise Metadata Report is available here


Fixed Station Information

Fixed Station Information

Station NameOMEX I site OMEX3
CategoryOffshore area
Latitude49° 5.28' N
Longitude13° 23.40' W
Water depth below MSL3670.0 m

OMEX I Moored Instrument and CTD site OMEX3

OMEX3 was one of four fixed stations for the OMEX I project. It was visited by eleven cruises and collected a variety of data during the period June 1993 to October 1995. These include:

  • Mooring deployments - Aandeera current meters with transmissometers
  • CTD casts
  • Net trawls
  • Plankton recorders
  • Cores
  • Water samples

The data collected a site OMEX3 lay within a box bounded by co-ordinates 48° 56.9'N, 013° 42.69'W at the southwest corner and 49° 6.5'N, 013° 17.1'W at the northeast corner, with an approximate depth of 3650 metres.

Related Fixed Station activities are detailed in Appendix 1


BODC Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
Blank Unqualified
< Below detection limit
> In excess of quoted value
A Taxonomic flag for affinis (aff.)
B Beginning of CTD Down/Up Cast
C Taxonomic flag for confer (cf.)
D Thermometric depth
E End of CTD Down/Up Cast
G Non-taxonomic biological characteristic uncertainty
H Extrapolated value
I Taxonomic flag for single species (sp.)
K Improbable value - unknown quality control source
L Improbable value - originator's quality control
M Improbable value - BODC quality control
N Null value
O Improbable value - user quality control
P Trace/calm
Q Indeterminate
R Replacement value
S Estimated value
T Interpolated value
U Uncalibrated
W Control value
X Excessive difference

SeaDataNet Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
0 no quality control
1 good value
2 probably good value
3 probably bad value
4 bad value
5 changed value
6 value below detection
7 value in excess
8 interpolated value
9 missing value
A value phenomenon uncertain
B nominal value
Q value below limit of quantification

Appendix 1: OMEX I site OMEX3

Related series for this Fixed Station are presented in the table below. Further information can be found by following the appropriate links.

If you are interested in these series, please be aware we offer a multiple file download service. Should your credentials be insufficient for automatic download, the service also offers a referral to our Enquiries Officer who may be able to negotiate access.

Series IdentifierData CategoryStart date/timeStart positionCruise
920613CTD or STD cast1993-06-26 06:08:0049.06933 N, 13.429 WFS Poseidon PO200_7
319408Currents -subsurface Eulerian1993-06-26 14:31:0049.0942 N, 13.4288 WFS Poseidon PO200_7
319433Currents -subsurface Eulerian1993-06-26 14:43:0049.0942 N, 13.4288 WFS Poseidon PO200_7
319421Currents -subsurface Eulerian1993-06-26 16:26:0049.0942 N, 13.4288 WFS Poseidon PO200_7
920268CTD or STD cast1993-06-30 01:23:0049.003 N, 13.497 WValdivia VLD137
920281CTD or STD cast1993-06-30 03:09:0049.015 N, 13.519 WValdivia VLD137
883871CTD or STD cast1993-09-26 06:12:0049.08983 N, 13.37367 WRV Belgica BG9322A
1271535Water sample data1993-09-26 09:52:0049.11844 N, 13.42365 WRV Belgica BG9322A
883895CTD or STD cast1993-09-26 15:28:0049.12883 N, 13.43617 WRV Belgica BG9322A
883902CTD or STD cast1993-09-26 18:36:0049.14583 N, 13.482 WRV Belgica BG9322A
1271560Water sample data1993-09-26 18:46:0049.14583 N, 13.48192 WRV Belgica BG9322A
914877CTD or STD cast1993-10-24 09:14:0049.08333 N, 13.43 WRV Pelagia PE093
908177CTD or STD cast1994-01-07 05:16:0049.07333 N, 13.415 WFS Meteor M27_1
908189CTD or STD cast1994-01-07 21:22:0049.05667 N, 13.40833 WFS Meteor M27_1
908190CTD or STD cast1994-01-08 04:17:0049.08167 N, 13.43 WFS Meteor M27_1
444345Currents -subsurface Eulerian1994-01-08 07:34:0049.0942 N, 13.41 WFS Meteor M27_1
444357Currents -subsurface Eulerian1994-01-08 07:37:0049.0942 N, 13.41 WFS Meteor M27_1
444333Currents -subsurface Eulerian1994-01-08 07:39:0049.0942 N, 13.41 WFS Meteor M27_1
908208CTD or STD cast1994-01-08 08:00:0049.08 N, 13.435 WFS Meteor M27_1
887491CTD or STD cast1994-04-30 02:24:0049.0845 N, 13.30117 WRRS Charles Darwin CD85
887429CTD or STD cast1994-04-30 03:09:0049.08983 N, 13.3 WRRS Charles Darwin CD85
1663785Water sample data1994-05-29 08:37:0049.08648 N, 13.43338 WRRS Charles Darwin CD86
974008CTD or STD cast1994-05-29 09:51:0049.0865 N, 13.43333 WRRS Charles Darwin CD86
910342CTD or STD cast1994-09-14 18:58:0049.09083 N, 13.41133 WFS Meteor M30_1
442953Currents -subsurface Eulerian1994-09-15 09:30:0049.0883 N, 13.39 WFS Meteor M30_1
442977Currents -subsurface Eulerian1994-09-15 10:08:0049.0883 N, 13.39 WFS Meteor M30_1
442965Currents -subsurface Eulerian1994-09-15 14:35:0049.0883 N, 13.39 WFS Meteor M30_1
915021CTD or STD cast1995-08-23 06:10:0049.08317 N, 13.43067 WRV Pelagia PE95A
886463CTD or STD cast1995-09-30 05:45:0049.084 N, 13.4195 WRRS Discovery D217
2129771Water sample data1995-09-30 06:22:3049.08403 N, 13.41943 WRRS Discovery D217
2133339Water sample data1995-09-30 06:22:3049.08403 N, 13.41943 WRRS Discovery D217
2144386Water sample data1995-09-30 06:22:3049.08403 N, 13.41943 WRRS Discovery D217
2144687Water sample data1995-09-30 06:22:3049.08403 N, 13.41943 WRRS Discovery D217
1676267Water sample data1995-09-30 06:23:0049.08403 N, 13.41943 WRRS Discovery D217
886395CTD or STD cast1995-10-06 09:27:0049.091 N, 13.38417 WRRS Discovery D217
1676311Water sample data1995-10-06 11:18:0049.09093 N, 13.38417 WRRS Discovery D217
2117364Water sample data1995-10-06 11:18:0049.09093 N, 13.38417 WRRS Discovery D217
2129826Water sample data1995-10-06 11:18:0049.09093 N, 13.38417 WRRS Discovery D217
2133420Water sample data1995-10-06 11:18:0049.09093 N, 13.38417 WRRS Discovery D217
2144430Water sample data1995-10-06 11:18:0049.09093 N, 13.38417 WRRS Discovery D217
2144743Water sample data1995-10-06 11:18:0049.09093 N, 13.38417 WRRS Discovery D217
886402CTD or STD cast1995-10-06 14:00:0049.08067 N, 13.4025 WRRS Discovery D217
1676323Water sample data1995-10-06 14:15:0049.08059 N, 13.40249 WRRS Discovery D217
2129838Water sample data1995-10-06 14:15:0049.08059 N, 13.40249 WRRS Discovery D217
2133432Water sample data1995-10-06 14:15:0049.08059 N, 13.40249 WRRS Discovery D217
2144442Water sample data1995-10-06 14:15:0049.08059 N, 13.40249 WRRS Discovery D217
2144755Water sample data1995-10-06 14:15:0049.08059 N, 13.40249 WRRS Discovery D217
886414CTD or STD cast1995-10-07 05:01:0049.07717 N, 13.38917 WRRS Discovery D217
2129851Water sample data1995-10-07 05:19:5549.07724 N, 13.38921 WRRS Discovery D217
2133444Water sample data1995-10-07 05:19:5549.07724 N, 13.38921 WRRS Discovery D217
886426CTD or STD cast1995-10-07 08:07:0049.0835 N, 13.41383 WRRS Discovery D217
2117376Water sample data1995-10-07 09:58:0049.08349 N, 13.41385 WRRS Discovery D217
2129863Water sample data1995-10-07 09:58:0049.08349 N, 13.41385 WRRS Discovery D217
2133456Water sample data1995-10-07 09:58:0049.08349 N, 13.41385 WRRS Discovery D217