Search the data

Metadata Report for BODC Series Reference Number 929888


Metadata Summary

Data Description

Data Category Surface temp/sal
Instrument Type
NameCategories
WET Labs {Sea-Bird WETLabs} C-Star transmissometer  transmissometers
Turner Designs SCUFA II Submersible Fluorometer  fluorometers
Sea-Bird SBE 45 MicroTSG thermosalinograph  thermosalinographs; water temperature sensor; salinity sensor
Sea-Bird SBE 38 thermometer  water temperature sensor
Instrument Mounting research vessel
Originating Country United Kingdom
Originator Mr John Howarth
Originating Organization Proudman Oceanographic Laboratory (now National Oceanography Centre, Liverpool)
Processing Status banked
Online delivery of data Download available - Ocean Data View (ODV) format
Project(s) Coastal Observatory
Oceans 2025
Oceans 2025 Theme 10
Oceans 2025 Theme 10 SO11
 

Data Identifiers

Originator's Identifier PD20_07_PRODQXF_SURF
BODC Series Reference 929888
 

Time Co-ordinates(UT)

Start Time (yyyy-mm-dd hh:mm) 2007-08-29 08:02
End Time (yyyy-mm-dd hh:mm) 2007-08-30 21:17
Nominal Cycle Interval 60.0 seconds
 

Spatial Co-ordinates

Southernmost Latitude 53.29733 N ( 53° 17.8' N )
Northernmost Latitude 53.86483 N ( 53° 51.9' N )
Westernmost Longitude 4.04167 W ( 4° 2.5' W )
Easternmost Longitude 3.21583 W ( 3° 12.9' W )
Positional Uncertainty 0.0 to 0.01 n.miles
Minimum Sensor or Sampling Depth 3.0 m
Maximum Sensor or Sampling Depth 3.0 m
Minimum Sensor or Sampling Height -
Maximum Sensor or Sampling Height -
Sea Floor Depth -
Sea Floor Depth Source -
Sensor or Sampling Distribution Fixed common depth - All sensors are grouped effectively at the same depth which is effectively fixed for the duration of the series
Sensor or Sampling Depth Datum Approximate - Depth is only approximate
Sea Floor Depth Datum -
 

Parameters

BODC CODERankUnitsTitle
AADYAA011DaysDate (time from 00:00 01/01/1760 to 00:00 UT on day)
AAFDZZ011DaysTime (time between 00:00 UT and timestamp)
ALATGP011DegreesLatitude north relative to WGS84 by unspecified GPS system
ALONGP011DegreesLongitude east relative to WGS84 by unspecified GPS system
ATTNSR011per metreAttenuation (red light wavelength) per unit length of the water body by 5 or 10cm path length transmissometer
FVLTWS011VoltsRaw signal (voltage) of instrument output by linear-response chlorophyll fluorometer
NVLTSC011VoltsRaw signal (voltage) of instrument output by SCUFA turbidity meter
PSALSG011DimensionlessPractical salinity of the water body by thermosalinograph and computation using UNESCO 1983 algorithm and calibration against independent measurements
TEMPHG011Degrees CelsiusTemperature of the water body by thermosalinograph hull sensor and verification against independent measurements

Definition of Rank

  • Rank 1 is a one-dimensional parameter
  • Rank 2 is a two-dimensional parameter
  • Rank 0 is a one-dimensional parameter describing the second dimension of a two-dimensional parameter (e.g. bin depths for moored ADCP data)

Problem Reports

Fluorescence

According to the data originator, the fluorometer was not functioning correctly during this cruise.

Beam attenuation

Data from this channel shows marked steps in the time series that look suspicious. These data should be used with caution.

Turbidity

Data from this channel have many constant readings due to the data being logged at low resolution, resulting in a blocky signal. There are several spikes in the channel and it is not clear how reliable these data are, therefore they should be used with caution.


Data Access Policy

Open Data supplied by Natural Environment Research Council (NERC)

You must always use the following attribution statement to acknowledge the source of the information: "Contains data supplied by Natural Environment Research Council."


Narrative Documents

SeaBird Digital Oceanographic Thermometer SBE38

The SBE38 is an ultra-stable thermistor that can be integrated as a remote temperature sensor with an SBE21 Thermosalinograph or an SBE 45 Micro TSG, or as a secondary temperature sensor with an SBE 16 plus, 16plus-IM, 16plus V2, 16plus-IM V2 or 19plus V2 SEACAT CTD.

Temperature is determined by applying an AC excitation to reference resistances and an ultra-stable aged thermistor. The reference resistor is a hermetically sealed VISHAY. AC excitation and ratiometric comparison using a common processing channel removes measurement errors due to parasitic thermocouples, offset voltages, leakage currents and gain errors.

The SBE38 can operate in polled sampling, where it takes one sample and transmits the data, or in continuous sampling.

Specifications

Depth rating up to 10500 m
Temperature range -5 to 35°C
Initial accuracy ± 0.001°C
Resolution 0.00025°C
Stability 0.001°C in 6 months
Response time 500 ms
Self-heating error < 200 µK

Further details can be found in the manufacturer's specification sheet.

Turner Designs Self-Contained Underwater Fluorescence Apparatus (SCUFA)

The Turner Designs SCUFA is a submersible fluorometer for chlorophyll and dye tracing operations that has been designed to operate in a wide range of concentrations, environmental conditions as well as operational modes (profiling or moored deployments). The instrument includes an integrated temperature probe and software which allow for automatic correction of fluorescence data from temperature effects. The superior ambient light rejection eliminates the effects of sunlight and allows the SCUFA to be used in surface waters without the need for external pumps or light shields.

Each instrument can be customised to meet user requirements. Users can choose one of the following channels: chlorophyll a, cyanobacteria (phycocyanin or phycoerythrin pigments), rhodamine WT, fluorescein and turbidity. Instrument options include turbidity, internal data logging and automatic temperature correction.

Three versions of the SCUFA are available: SCUFA I, II and III. SCUFA I and II are used for chlorophyll a applications, while SCUFA III is used for Rhodamine WT. Models II and III include a turbidity channel that is not present on model I. The SCUFA has been out of production since 2008.

Specifications

Depth rating 600 m
Detector Photodiode
Temperature range -2 to 40°C
Maximum sampling rate

1Hz- digital

5 Hz- analog

Resolution

12 bit- digital

1.2 mV- analog

Dynamic Range
Fluorescence 4 orders of magnitude
Turbidity 3 orders of magnitude

The table below presents the specifications for the different channels.

Specifications Chlorophyll Cyanobacteria Rhodamine WT/Fluorescein
Light source Blue

Orange- PC

Blue- PE

Green
Excitation/Emission 460/685

595/670 (phycocyanin, PC)

528/573 (phycoerythrin, PE)

530/600 (rhodamine)

490/580 (fluorescein)

Minimum detection Limit
Fluorescence 0.02 µg L-1 150 cells mL-1 0.04 ppb
Turbidity 0.05 NTU 0.05 NTU 0.05 NTU

Further details can be found in the manufacturer's brochure.

WETLabs C-Star transmissometer

This instrument is designed to measure beam transmittance by submersion or with an optional flow tube for pumped applications. It can be used in profiles, moorings or as part of an underway system.

Two models are available, a 25 cm pathlength, which can be built in aluminum or co-polymer, and a 10 cm pathlength with a plastic housing. Both have an analog output, but a digital model is also available.

This instrument has been updated to provide a high resolution RS232 data output, while maintaining the same design and characteristics.

Specifications

Pathlength 10 or 25 cm
Wavelength 370, 470, 530 or 660 nm
Bandwidth

~ 20 nm for wavelengths of 470, 530 and 660 nm

~ 10 to 12 nm for a wavelength of 370 nm

Temperature error 0.02 % full scale °C-1
Temperature range 0 to 30°C
Rated depth

600 m (plastic housing)

6000 m (aluminum housing)

Further details are available in the manufacturer's specification sheet or user guide.

PD20_07 Sea surface hydrography instrument details

Underway hydrography was recorded by a suite of instruments in the ship's flow through system and a temperature sensor located near the flow through intake, at the hull. The depth of the flow through intake was 3 m. Instrument details are given in the table below.

Instrument type Make and model Serial Number Manufacturer's details available?
Thermosalinograph Sea-Bird SBE 45 MicroTSG - Yes
Sea surface temperature sensor Sea-Bird SBE 38 digital thermometer 0326 Yes
Fluorometer Turner Designs SCUFA II Fluorometer with turbidity sensor - Yes
Transmissometer WetLabs C-Star 660 nm, 10 cm path CST-414PR Yes

SeaBird MicroTSG Thermosalinograph SBE 45

The SBE45 MicroTSG is an externally powered instrument designed for shipboard measurement of temperature and conductivity of pumped near-surface water samples. The instrument can also compute salinity and sound velocity internally.

The MicroTSG comprises a platinum-electrode glass conductivity cell and a stable, pressure-protected thermistor temperature sensor. It also contains an RS-232 port for appending the output of a remote temperature sensor, allowing for direct measurement of sea surface temperature.

The instrument can operate in Polled, Autonomous and Serial Line Sync sampling modes:

  • Polled sampling: the instrument takes one sample on command
  • Autonomous sampling: the instrument samples at preprogrammed intervals and does not enter quiescence (sleep) state between samples
  • Serial Line Sync: a pulse on the serial line causes the instrument to wake up, sample and re-enter quiescent state automatically

Specifications

  Conductivity Temperature Salinity
Range 0 to 7 Sm-1 -5 to 35°C  
Initial accuracy 0.0003 Sm-1 0.002°C 0.005 (typical)
Resolution 0.00001 Sm-1 0.0001°C 0.0002 (typical)
Typical stability (per month) 0.0003 Sm-1 0.0002°C 0.003 (typical)

Further details can be found in the manufacturer's specification sheet.

Prince Madog Cruise PD20_07 Sea Surface Hydrography Series

Hydrography Processing Notes

  • Salinity

    Salinity was calibrated by comparing TSG salinity with concurrent CTD surface salinity, averaged over the top 3 m. The offset between CTD salinity and underway salinity was examined to see if it varied with time, or CTD salinity. Three outliers were found in the dataset and excluded from further analysis. A significant relationship was found between salinity offset and CTD salinity at 95% confidence. Therefore, a calibration equation based on 33 observations was developed, where calibrated salinity = 1.0058 * underway salinity - 0.1629. The residual range is between -0.0122 to 0.0182(4dp). The RMS error is 0.0056. The mean offset for the uncalibrated data set is 0.02461 with a standard deviation of 0.00688.

  • Sea surface temperature

    Temperature was calibrated by comparing underway hull temperature with concurrent CTD surface temperature, averaged over the top 3 m. The offset between CTD temperature and underway temperature was examined to see if it varied with time or calibrated CTD temperature. Two outliers were identified in this dataset and were exlcuded from further analysis. A regression analysis did not yield a significant relationship between offset and CTD temperature at 95% confidence. Therefore a calibration equation using the mean offset was developed, based on 34 observations: calibrated temperature = uncalibrated temperature - 0.03797. The residual range is -0.04903 to 0.03397. The RMS error is 0.0233 and the standard deviation value is 0.02369.

  • Beam attenuation

    The data were logged as linear voltages. Cruise air readings were used to correct the reference voltage for instrument drift over time. The corrected reference voltage was then used to calculate beam transmission (equation 1 - Meuller et al., 2003). Beam attenuation was calculated from this using equation 2.

    (1) T = (Vsig - Vd CR) / [Vair CR - Vd CR / Vair F - Vd F] * (Vref F - Vd F)
    (2) Atten = [(-1/R) * ln (T) ] + 0.364

    Where Vsig = signal recorded by instrument during deployment; Vd CR = blank cruise voltage = 0.0598; Vair CR = cruise air voltage = 2.6025; Vair F = manufacturer's air voltage = 4.856; Vd F = manufacturer's blocked path voltage = 0.060; Vref F = manufacturer's pure water reference voltage = 4.934; T = beam transmission; R = optical path length (m) = 0.1.

    The constant 0.364, which is the beam attenuation for particle free water, is added because the C-Star transmissometer is configured to output attenuation due to particulates alone. The addition of this constant converts the record into the attenuation due to water and particles.

    References

    Mueller, J.M et al., 2003: Ocean Optics Protocols for Satellite Ocean Colour Sensor Validation, Revision 4, Volume IV. Inherent Optical Properties: Instruments, Characterizaton, Fields Measurements and Data Analysis Protocols, NASA/TM-2003-21621, Goddard Space Flight Centre, 76pp

  • Fluorescence and turbidity

    The data were logged as linear voltages. No calibration data were supplied, so fluorescence and turbidity remain as unprocessed voltages. The channels were examined graphically and any suspect values flagged. Inter-comparison with the beam attenuation channel was carried out.

Prince Madog Cruise PD20_07 Sea Surface Hydrography, Meteorology and Navigation Series

Data acquisition

Surface hydrographic (ship's intake 3 m below surface), meteorological and navigation data, including ship heading and bathymetric depth were time stamped and logged to a central logging system. Due to modification work on the ship's mast, the only meteorological sensor in place during the cruise was the barometer. The data underwent conversion from raw counts into engineering units and were sent to BODC, at 60 second resolution, for further processing.

BODC underway data processing procedures

All underway sea surface hydrography, meteorology and ship's navigation data were merged into a common QXF.

The QXF file then underwent a further step. This involved using Matlab transfer 378 to split the underway QXF file into three separate QXF files. One contained data for sea surface hydrography, one for meteorological data and the final QXF file held the navigation data.

Each data channel was visually inspected on a graphics workstation and any spikes or periods of dubious data were flagged suspect. The capabilities of the workstation screening software allows all possible comparative screening checks between channels. The system also has the facility of simultaneously displaying the data and the ship's position on a map to enable data screening to take oceanographic climatology into account.


Project Information

Oceans 2025 Theme 10

Oceans 2025 is a strategic marine science programme, bringing marine researchers together to increase people's knowledge of the marine environment so that they are better able to protect it for future generations.

Theme 10: Integration of Sustained Observations in the Marine Environment spans all marine domains from the sea-shore to the global ocean, providing data and knowledge on a wide range of ecosystem properties and processes (from ocean circulation to biodiversity) that are critical to understanding Earth system behaviour and identifying change. They have been developed not merely to provide long-term data sets, but to capture extreme or episodic events, and play a key role in the initialisation and validation of models. Many of these SOs will be integrated into the newly developing UK Marine Monitoring Strategy - evolving from the Defra reports Safeguarding our Seas (2002) and Charting Progress (2005), thus contributing to the underpinning knowledge for national marine stewardship. They will also contribute to the UK GOOS Strategic Plan (IACMST, 2006) and the Global Marine Assessment.

Weblink: http://www.oceans2025.org/


Oceans 2025 - The NERC Marine Centres' Strategic Research Programme 2007-2012

Who funds the programme?

The Natural Environment Research Council (NERC) funds the Oceans 2025 programme, which was originally planned in the context of NERC's 2002-2007 strategy and later realigned to NERC's subsequent strategy (Next Generation Science for Planet Earth; NERC 2007).

Who is involved in the programme?

The Oceans 2025 programme was designed by and is to be implemented through seven leading UK marine centres. The marine centres work together in coordination and are also supported by cooperation and input from government bodies, universities and other partners. The seven marine centres are:

  • National Oceanography Centre, Southampton (NOCS)
  • Plymouth Marine Laboratory (PML)
  • Marine Biological Association (MBA)
  • Sir Alister Hardy Foundation for Marine Science (SAHFOS)
  • Proudman Oceanographic Laboratory (POL)
  • Scottish Association for Marine Science (SAMS)
  • Sea Mammal Research Unit (SMRU)

Oceans2025 provides funding to three national marine facilities, which provide services to the wider UK marine community, in addition to the Oceans 2025 community. These facilities are:

  • British Oceanographic Data Centre (BODC), hosted at POL
  • Permanent Service for Mean Sea Level (PSMSL), hosted at POL
  • Culture Collection of Algae and Protozoa (CCAP), hosted at SAMS

The NERC-run Strategic Ocean Funding Initiative (SOFI) provides additional support to the programme by funding additional research projects and studentships that closely complement the Oceans 2025 programme, primarily through universities.

What is the programme about?

Oceans 2025 sets out to address some key challenges that face the UK as a result of a changing marine environment. The research funded through the programme sets out to increase understanding of the size, nature and impacts of these changes, with the aim to:

  • improve knowledge of how the seas behave, not just now but in the future;
  • help assess what that might mean for the Earth system and for society;
  • assist in developing sustainable solutions for the management of marine resources for future generations;
  • enhance the research capabilities and facilities available for UK marine science.

In order to address these aims there are nine science themes supported by the Oceans 2025 programme:

  • Climate, circulation and sea level (Theme 1)
  • Marine biogeochemical cycles (Theme 2)
  • Shelf and coastal processes (Theme 3)
  • Biodiversity and ecosystem functioning (Theme 4)
  • Continental margins and deep ocean (Theme 5)
  • Sustainable marine resources (Theme 6)
  • Technology development (Theme 8)
  • Next generation ocean prediction (Theme 9)
  • Integration of sustained observations in the marine environment (Theme 10)

In the original programme proposal there was a theme on health and human impacts (Theme 7). The elements of this Theme have subsequently been included in Themes 3 and 9.

When is the programme active?

The programme started in April 2007 with funding for 5 years.

Brief summary of the programme fieldwork/data

Programme fieldwork and data collection are to be achieved through:

  • physical, biological and chemical parameters sampling throughout the North and South Atlantic during collaborative research cruises aboard NERC's research vessels RRS Discovery, RRS James Cook and RRS James Clark Ross;
  • the Continuous Plankton Recorder being deployed by SAHFOS in the North Atlantic and North Pacific on 'ships of opportunity';
  • physical parameters measured and relayed in near real-time by fixed moorings and ARGO floats;
  • coastal and shelf sea observatory data (Liverpool Bay Coastal Observatory (LBCO) and Western Channel Observatory (WCO)) using the RV Prince Madog and RV Quest.

The data is to be fed into models for validation and future projections. Greater detail can be found in the Theme documents.


Oceans 2025 Theme 10, Sustained Observation Activity 11: Liverpool Bay and Irish Sea Coastal Observatory

Sustained, systematic observations of the ocean and continental shelf seas at appropriate time and space scales allied to numerical models are key to understanding and prediction. In shelf seas these observations address issues as fundamental as 'what is the capacity of shelf seas to absorb change?' encompassing the impacts of climate change, biological productivity and diversity, sustainable management, pollution and public health, safety at sea and extreme events. Advancing understanding of coastal processes to use and manage these resources better is challenging; important controlling processes occur over a broad range of spatial and temporal scales which cannot be simultaneously studied solely with satellite or ship-based platforms.

Considerable effort has been spent by the Proudman Oceangraphic Laboratory (POL) in the years 2001 - 2006 in setting up an integrated observational and now-cast modelling system in Liverpool Bay (see Figure), with the recent POL review stating the observatory was seen as a leader in its field and a unique 'selling' point of the laboratory. Cost benefit analysis (IACMST, 2004) shows that benefits really start to accrue after 10 years. In 2007 - 2012 exploitation of (i) the time series being acquired, (ii) the model-data synthesis and (iii) the increasingly available quantities of real-time data (e.g. river flows) can be carried out through Sustained Observation Activity (SO) 11, to provide an integrated assessment and short term forecasts of the coastal ocean state.

BODC image

Overall Aims and Purpose of SO 11

  • To continue and enlarge the scope of the existing coastal observatory in Liverpool Bay to routinely monitor the northern Irish Sea
  • To develop the synthesis of measurements and models in the coastal ocean to optimize measurement arrays and forecast products. Driving forward shelf seas' operational oceanography with the direct objective of improving the national forecasting capability, expressed through links to the National Centre for Ocean Forecasting (NCOF)
  • To exploit the long time-series of observations and model outputs to: a) identify the roles of climate and anthropogenic inputs on the coastal ocean's physical and biological functioning (including impacts of nutrient discharges, offshore renewable energy installations and fishing activity) taking into consideration the importance of events versus mean storms / waves, river discharge / variable salinity stratification / horizontal gradients; b) predict the impacts of climate change scenarios; and c) provide new insights to Irish Sea dynamics for variables either with seasonal cycles and interannual variability, or which show weak or no seasonal cycles
  • To provide and maintain a 'laboratory' within which a variety of observational and model experiments can be undertaken (Oceans 2025 Themes 3, 6, 8, 9), including capture of extreme events
  • Demonstrate the value of an integrated approach in assessment and forecasting
  • Demonstrate the coastal observatory as a tool for marine management strategies through collaboration with the Environment Agency (EA), Department for Environment, Food and Rural Affairs (DEFRA), Joint Nature Conservation Commmittee (JNCC), English Nature (EN), Department of Agriculture and Rural Development (DARD), and Local Authorities, providing management information pertinent to policy (e.g. Water Framework Directive)

Measurement and Modelling Activities

  • East Mooring Site: Bottom frame with full suite of physical measurements (high frequency Acoustic Doppler Current Profiler (ADCP), conductivity, temperature, turbidity and fluorescence), a Centre for Environment, Fisheries and Aquaculture Science (CEFAS) directional wavebuoy, and a CEFAS Smartbuoy collecting surface properties including salinity, temperature, turbidity, nutrients, irradiance and chlorophyll. All transmit data in real-time via Orbcomm. The Smartbuoy also collects daily water samples.
  • West Mooring Site: Bottom frame with full suite of physical measurements (high frequency ADCP, conductivity, temperature, turbidity and fluorescence), CEFAS Smartbuoy.
  • Spatial Survey: Four - six week intervals (determined by biofouling of optical sensors). Spatial surveys comprise of vertical profiles of CTD, suspended particulate material (SPM), some bed sediment sampling and surface and bed nutrients, phytoplankton, zooplankton.
  • Ferry: The Birkenhead - Belfast ferry samples near surface (5 m depth) temperature, salinity, turbidity, chlorophyll, with data transmitted by Orbcomm. The route is scientifically varied passing through six completely different hydrodynamic regions, which significantly impact on their ecological function.
  • Tide gauges: Real-time data are obtained from tide gauges operated by Mersey Docks and Harbour Company (MDHC) and the UK tide gauge network.
  • Satellite imagery: Weekly composite satellite data, Advanced Very High Resolution Radiometer (AVHRR) sea surface temperature (SST) and ocean colour (chlorophyll and suspended sediment), are provided by the Remote Sensing Data Analysis Service (RSDAS) based at Plymouth Marine Laboratory (PML).
  • HF radar: A phased array HF radar system (a 12-16MHz WERA HF radar) measuring surface currents and waves with maximum range 75km at a resolution of 4km for sea surface currents and for 2-D wave spectra.
  • Meteorology station: With web camera, located on Hilbre Island at the mouth of the Dee Estuary
  • Operational models: The Coastal Observatory uses Proudman Oceanographic Laboratory Coastal Ocean Modelling System (POLCOMS), which is part of Oceans 2025 Theme 9.

More detailed information on this Work Package is available at pages 32 - 35 of the official Oceans 2025 Theme 10 document: Oceans 2025 Theme 10

Weblink: http://www.oceans2025.org/

References:

IACMST., 2004. The Economics of Sustained Marine Measurements. IACMST Information Document, N0.11, Southampton: IACMST, 96 pp


Proudman Oceanographic Laboratory Coastal Observatory

The Coastal Observatory was established by Proudman Oceanographic Laboratory as a coastal zone real time observing and monitoring system. The main objective is to understand a coastal sea's response both to natural forcing and to the consequences of human activity. Near real-time measurements will be integrated with coupled models into a pre-operational coastal prediction system whose results will be displayed on the World Wide Web.

The Observatory is expected to grow and evolve as resources and technology allow, all the while building up long time series. A site selection pilot study was carried out in September 2001 and the Observatory became operational in August 2002.

The site is located in Liverpool Bay and is subject to typical coastal sea processes, with strong tides, occasional large storm surges and waves, freshwater input, stable and unstable stratification, high suspended sediment concentration and biogeochemical interaction. Measurements and monitoring will focus on the impacts of storms, variations in river discharge (especially the Mersey), seasonality and blooms in Liverpool Bay.

A variety of methods will be used to obtain measurements, including:

  1. Moored instruments for in situ time series of currents, temperature and salinity profiles, and surface waves and meteorology. It is hoped that turbidity and chlorophyll measurements will be made at another site as the Observatory progresses;
  2. The Cefas Smartbuoy for surface properties such as nutrients and chlorophyll, starting late 2002;
  3. R.V. Prince Madog to carry out spatial surveys and service moorings;
  4. Instrumented ferries for near surface temperature, salinity, turbidity, chlorophyll and nutrients. The first route will be Liverpool to Douglas, Isle of Man, starting late 2002;
  5. Drifters for surface currents and properties such as temperature and salinity, starting in 2004;
  6. Tide gauges, with sensors for meteorology, waves, temperature and salinity, where appropriate;
  7. Meteorological data from Bidston Observatory and Hilbre Island, HF radar and tide gauge sites;
  8. Shore-based HF radar measuring waves and surface currents out to a range of 50 km, starting in 2003;
  9. Satellite data, with infrared for sea surface temperature and visible for chlorophyll and suspended sediment.

The partners currently involved with the project are listed below:

  • Proudman Oceanographic Laboratory
  • British Oceanographic Data Centre
  • UK Meteorological Office
  • Centre for Environment, Fisheries and Aquaculture Science
  • Environment Agency
  • Liverpool University and Port Erin Marine Laboratory
  • Bangor University School of Ocean Sciences
  • National Oceanography Centre Southampton
  • Department of Agriculture and Rural Development in Northern Ireland

A summary of Coastal Observatory cruises to date on R.V. Prince Madog is given in the table below:

Year No. of cruises Work summary
2001 1 Site selection and pilot study. 95 CTD casts.
2002 4 POL moorings deployed and serviced
Cefas Waverider and SmartBuoy deployed and serviced
103 CTD casts
2003 10 POL moorings serviced
Cefas Waverider and SmartBuoy serviced
341 CTD/LISST casts
2004 9 POL moorings serviced
Cefas Waverider and SmartBuoy serviced
347 CTD/LISST casts
2005 9 POL moorings serviced
Cefas Waverider and SmartBuoy serviced
268 CTD/LISST casts
2006 11 POL moorings serviced
Cefas Waverider and SmartBuoy serviced
508 CTD/LISST casts
2007 9 POL moorings serviced
Cefas Waverider and SmartBuoy serviced
471 CTD/LISST casts
2008 9 POL moorings serviced
Cefas Waverider and SmartBuoy serviced
260 CTD/LISST casts
2009 7 POL moorings serviced
Cefas Waverider and SmartBuoy serviced
213 CTD/LISST casts
2010 8 POL moorings serviced
Cefas Waverider and SmartBuoy serviced
268 CTD/LISST casts
2011 6 POL moorings serviced
Cefas Waverider and SmartBuoy serviced
307 CTD/LISST casts to date, ongoing

Data Activity or Cruise Information

Cruise

Cruise Name PD20/07
Departure Date 2007-08-29
Arrival Date 2007-08-30
Principal Scientist(s)M John Howarth (Proudman Oceanographic Laboratory)
Ship RV Prince Madog

Complete Cruise Metadata Report is available here


Fixed Station Information


No Fixed Station Information held for the Series


BODC Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
Blank Unqualified
< Below detection limit
> In excess of quoted value
A Taxonomic flag for affinis (aff.)
B Beginning of CTD Down/Up Cast
C Taxonomic flag for confer (cf.)
D Thermometric depth
E End of CTD Down/Up Cast
G Non-taxonomic biological characteristic uncertainty
H Extrapolated value
I Taxonomic flag for single species (sp.)
K Improbable value - unknown quality control source
L Improbable value - originator's quality control
M Improbable value - BODC quality control
N Null value
O Improbable value - user quality control
P Trace/calm
Q Indeterminate
R Replacement value
S Estimated value
T Interpolated value
U Uncalibrated
W Control value
X Excessive difference

SeaDataNet Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
0 no quality control
1 good value
2 probably good value
3 probably bad value
4 bad value
5 changed value
6 value below detection
7 value in excess
8 interpolated value
9 missing value
A value phenomenon uncertain
B nominal value
Q value below limit of quantification