Search the data

Metadata Report for BODC Series Reference Number 667844


Metadata Summary

Data Description

Data Category Hydrography time series at depth
Instrument Type
NameCategories
Sea-Bird SBE 43 Dissolved Oxygen Sensor  dissolved gas sensors
Sea-Bird SBE 911plus CTD  CTD; water temperature sensor; salinity sensor
Instrument Mounting propelled unmanned submersible
Originating Country United Kingdom
Originator Dr Steve McPhail
Originating Organization Southampton Oceanography Centre (now National Oceanography Centre, Southampton)
Processing Status banked
Online delivery of data Download available - Ocean Data View (ODV) format
Project(s) Autosub Under Ice
 

Data Identifiers

Originator's Identifier ASUB367CTD
BODC Series Reference 667844
 

Time Co-ordinates(UT)

Start Time (yyyy-mm-dd hh:mm) 2004-08-25 06:05
End Time (yyyy-mm-dd hh:mm) 2004-08-26 04:35
Nominal Cycle Interval 2.0 seconds
 

Spatial Co-ordinates

Start Latitude 79.34500 N ( 79° 20.7' N )
End Latitude 79.34810 N ( 79° 20.9' N )
Start Longitude 13.84730 W ( 13° 50.8' W )
End Longitude 13.85080 W ( 13° 51.0' W )
Positional Uncertainty 0.0 to 0.01 n.miles
Minimum Sensor or Sampling Depth 0.04 m
Maximum Sensor or Sampling Depth 52.7 m
Minimum Sensor or Sampling Height -
Maximum Sensor or Sampling Height -
Sea Floor Depth -
Sea Floor Depth Source -
Sensor or Sampling Distribution Variable common depth - All sensors are grouped effectively at the same depth, but this depth varies significantly during the series
Sensor or Sampling Depth Datum Instantaneous - Depth measured below water line or instantaneous water body surface
Sea Floor Depth Datum -
 

Parameters

BODC CODERankUnitsTitle
AADYAA011DaysDate (time from 00:00 01/01/1760 to 00:00 UT on day)
AAFDZZ011DaysTime (time between 00:00 UT and timestamp)
ACYCAA011DimensionlessSequence number
ALATGR011DegreesLatitude north relative to WGS84 by dead reckoning based on GPS and em-log or ADCP
ALONGR011DegreesLongitude east relative to WGS84 by dead reckoning based on GPS and em-log or ADCP
DEPHPR011MetresDepth (spatial coordinate) relative to water surface in the water body by profiling pressure sensor and conversion to seawater depth using UNESCO algorithm
DOXYSU011Micromoles per litreConcentration of oxygen {O2 CAS 7782-44-7} per unit volume of the water body [dissolved plus reactive particulate phase] by Sea-Bird SBE 43 sensor and no calibration against sample data
PRESPR011DecibarsPressure (spatial coordinate) exerted by the water body by profiling pressure sensor and correction to read zero at sea level
PSALCU011DimensionlessPractical salinity of the water body by CTD and computation using UNESCO 1983 algorithm and NO calibration against independent measurements
PSALCU021DimensionlessPractical salinity of the water body by CTD (second sensor) and computation using UNESCO 1983 algorithm and NO calibration against independent measurements
SIGTPR011Kilograms per cubic metreSigma-theta of the water body by CTD and computation from salinity and potential temperature using UNESCO algorithm
TEMPCU011Degrees CelsiusTemperature of the water body by CTD and NO verification against independent measurements
TEMPCU021Degrees CelsiusTemperature of the water body by CTD (second sensor) and NO verification against independent measurements

Definition of Rank

  • Rank 1 is a one-dimensional parameter
  • Rank 2 is a two-dimensional parameter
  • Rank 0 is a one-dimensional parameter describing the second dimension of a two-dimensional parameter (e.g. bin depths for moored ADCP data)

Problem Reports

No Problem Report Found in the Database


Data Access Policy

Open Data supplied by Natural Environment Research Council (NERC)

You must always use the following attribution statement to acknowledge the source of the information: "Contains data supplied by Natural Environment Research Council."


Narrative Documents

Sea-Bird Dissolved Oxygen Sensor SBE 43 and SBE 43F

The SBE 43 is a dissolved oxygen sensor designed for marine applications. It incorporates a high-performance Clark polarographic membrane with a pump that continuously plumbs water through it, preventing algal growth and the development of anoxic conditions when the sensor is taking measurements.

Two configurations are available: SBE 43 produces a voltage output and can be incorporated with any Sea-Bird CTD that accepts input from a 0-5 volt auxiliary sensor, while the SBE 43F produces a frequency output and can be integrated with an SBE 52-MP (Moored Profiler CTD) or used for OEM applications. The specifications below are common to both.

Specifications

Housing Plastic or titanium
Membrane

0.5 mil- fast response, typical for profile applications

1 mil- slower response, typical for moored applications

Depth rating

600 m (plastic) or 7000 m (titanium)

10500 m titanium housing available on request

Measurement range 120% of surface saturation
Initial accuracy 2% of saturation
Typical stability 0.5% per 1000 h

Further details can be found in the manufacturer's specification sheet.

Sea-Bird Electronics SBE 911 and SBE 917 series CTD profilers

The SBE 911 and SBE 917 series of conductivity-temperature-depth (CTD) units are used to collect hydrographic profiles, including temperature, conductivity and pressure as standard. Each profiler consists of an underwater unit and deck unit or SEARAM. Auxiliary sensors, such as fluorometers, dissolved oxygen sensors and transmissometers, and carousel water samplers are commonly added to the underwater unit.

Underwater unit

The CTD underwater unit (SBE 9 or SBE 9 plus) comprises a protective cage (usually with a carousel water sampler), including a main pressure housing containing power supplies, acquisition electronics, telemetry circuitry, and a suite of modular sensors. The original SBE 9 incorporated Sea-Bird's standard modular SBE 3 temperature sensor and SBE 4 conductivity sensor, and a Paroscientific Digiquartz pressure sensor. The conductivity cell was connected to a pump-fed plastic tubing circuit that could include auxiliary sensors. Each SBE 9 unit was custom built to individual specification. The SBE 9 was replaced in 1997 by an off-the-shelf version, termed the SBE 9 plus, that incorporated the SBE 3 plus (or SBE 3P) temperature sensor, SBE 4C conductivity sensor and a Paroscientific Digiquartz pressure sensor. Sensors could be connected to a pump-fed plastic tubing circuit or stand-alone.

Temperature, conductivity and pressure sensors

The conductivity, temperature, and pressure sensors supplied with Sea-Bird CTD systems have outputs in the form of variable frequencies, which are measured using high-speed parallel counters. The resulting count totals are converted to numeric representations of the original frequencies, which bear a direct relationship to temperature, conductivity or pressure. Sampling frequencies for these sensors are typically set at 24 Hz.

The temperature sensing element is a glass-coated thermistor bead, pressure-protected inside a stainless steel tube, while the conductivity sensing element is a cylindrical, flow-through, borosilicate glass cell with three internal platinum electrodes. Thermistor resistance or conductivity cell resistance, respectively, is the controlling element in an optimized Wien Bridge oscillator circuit, which produces a frequency output that can be converted to a temperature or conductivity reading. These sensors are available with depth ratings of 6800 m (aluminium housing) or 10500 m (titanium housing). The Paroscientific Digiquartz pressure sensor comprises a quartz crystal resonator that responds to pressure-induced stress, and temperature is measured for thermal compensation of the calculated pressure.

Additional sensors

Optional sensors for dissolved oxygen, pH, light transmission, fluorescence and others do not require the very high levels of resolution needed in the primary CTD channels, nor do these sensors generally offer variable frequency outputs. Accordingly, signals from the auxiliary sensors are acquired using a conventional voltage-input multiplexed A/D converter (optional). Some Sea-Bird CTDs use a strain gauge pressure sensor (Senso-Metrics) in which case their pressure output data is in the same form as that from the auxiliary sensors as described above.

Deck unit or SEARAM

Each underwater unit is connected to a power supply and data logging system: the SBE 11 (or SBE 11 plus) deck unit allows real-time interfacing between the deck and the underwater unit via a conductive wire, while the submersible SBE 17 (or SBE 17 plus) SEARAM plugs directly into the underwater unit and data are downloaded on recovery of the CTD. The combination of SBE 9 and SBE 17 or SBE 11 are termed SBE 917 or SBE 911, respectively, while the combinations of SBE 9 plus and SBE 17 plus or SBE 11 plus are termed SBE 917 plus or SBE 911 plus.

Specifications

Specifications for the SBE 9 plus underwater unit are listed below:

Parameter Range Initial accuracy Resolution at 24 Hz Response time
Temperature -5 to 35°C 0.001°C 0.0002°C 0.065 sec
Conductivity 0 to 7 S m-1 0.0003 S m-1 0.00004 S m-1 0.065 sec (pumped)
Pressure 0 to full scale (1400, 2000, 4200, 6800 or 10500 m) 0.015% of full scale 0.001% of full scale 0.015 sec

Further details can be found in the manufacturer's specification sheet.

JR106B Autosub Mission CTD data

Data Originator's Comments

  • M358: This was a short shakedown test. The Autosub was programmed to surface if it had not received an acoustic command within 40 minutes of being deployed. Due to problems with the shipborne acoustic system, the command could not be sent and the Autosub surfaced on its timer. This mission took place off the continental shelf, so no bottom tracking data are associated with it.
  • M359: This mission was a 3km run through 10% ice and back to a recovery position. No bottom track navigation data are available for this mission
  • M361: This mission was a 3km run through 10% ice and back to a recovery position. No bottom track navigation data are available for this mission
  • M362: The Autosub ran underneath a large ice floe and back again.
  • M363: The Autosub ran into the pack ice on an intended 18-hour mission. However, the AUV turned back after seven hours because the collision avoidance system was activated due to a limited water depth.
  • M364: The mission, like mission 363, was intended to be an 18 hour run under pack ice. However, after a few miles the forward collision avoidance system was activated and the Autosub turned back.
  • M365: This was a 24 hour mission, where the Autosub ran into the pack ice and back. During the return leg, the Autosub's collision avoidance sytem was activated. The shipborne homing system was used to aid the recovery of the vehicle as the intended recovery waypoint was covered with ice.
  • M366: This mission was a successfully completed 12 hour run into pack ice. The homing system was used to guide the AUV out of teh pack ice for recovery.
  • M367: This mission was designed to be a lawn mower survey under fast ice at the field site. The survey was designed to have a track spacing of 50m and be run at a depth of 40m. However, only one-third of the mission was completed as the homing system of the AUV was activated. It is thought that this was due to the proximity of the Polarstern research vessel and its acoustic survey instruments. The shipborne homing system was used to aid revcovery of the Autosub
  • M368: This mission was used to re-run a section of the survey from mission 367 which had been planned to overlap with ground truthing, but was missed due to the homing error on that mission. This mission was completed successfully. There is a moderate navigation anomaly between the dead reckoned position and the GPS fix at the end of the mission of 42m east and 137m north. The expected jump for a mission of this length would be +/- 20m. The post-processing software assumes, estimates and corrects for a constant velocity error between GPS fixes.

BODC Processing (all missions)

The data were received by BODC in the ASCII .cnv format used by SeaBird for the storage of CTD data.

Using the SeaBird SeaSoft processing tools, the following operations were carried out:

Align CTD: Values used: Conductivity advance: 0.073 seconds and primary oxygen advance 3 seconds
Cell Thermal Mass: Values used: Primary and Secondary: Alpha = 0.03; Beta = 7
Bin Average: Run using a two second bin
Derive: The following channels were created: depSM: Depth [salt water, m]; sal00: Salinity [PSU]; sal11: Salinity, 2 [PSU]; density00: Density [density, Kg/m^3]; density11: Density, 2 [density, Kg/m^3]; oxsatMg/L: Oxygen Saturation [mg/l]; sigma-é00: Density [sigma-theta, Kg/m^3]; sigma-é11: Density, 2 [sigma-theta, Kg/m^3]
Strip: Stripped first salinity channel and first density channel (as included in originator's files) from the JR106 .CNV files

The data were then transferred to NetCDF using BODC transfer process 357. Following the transfer to NetCDF, the appropriate navigation channels were merged into the file.

BODC Parameter Code Mapping

Raw Data Variable Name Description Units Conversion Factor BODC Parameter Code Units
Date Julian Date month/day/year   AADYAA01 Days since 00:00 01/01/1760
Time UTC hours/minutes/seconds   AAFDZZ01 Fraction of day
  Cycle number     ACYCAA01  
Pos_N Best estimate latitude degrees   ALATGR01 degrees
Pos_E Best estimate longitude degrees   ALONGR01 degrees
depSM Depth in salt water metres   DEPHPR01 metres
oxsatMg/L Oxygen Saturation milligrams per litre Conversion by transfer DOXYSU01 micromoles per litre
prDM Pressure, Digiquartz decibars   PRESPR01 decibars
sal00 Salinity PSU   PSALCU01  
sal11 Salinity PSU   PSALCU02  
sigma-é00 Density [sigma-theta] kilograms per cubic metre   SIGTPR01 kilograms per cubic metre
t090C Temperature [ITS-90] degrees Centigrad   TEMPCU01 degrees Centigrade
t190C Temperature [ITS-90] degrees Centigrade   TEMPCU02 degrees Centigrade

Data Quality

The data were screened in the BODC EDSERPLO software package in order to check the data quality. The series have been trimmed to include only the subsurface measurements. The CTD pump is depth activated (~ 4m), therefore data shallower than this should be treated with caution, particularly at the start of the data series.


Project Information

AutoSub Under Ice (AUI) Programme

AutoSub was an interdisciplinary Natural Environment Research Council (NERC) thematic programme conceived to investigate the marine environment of floating ice shelves with a view to advancing the understanding of their role in the climate system.

The AUI programme had the following aims:

  • To attain the programme's scientific objectives through an integrated programme based on interdisciplinary collaborations and an international perspective
  • To develop a data management system for the archiving and collation of data collected by the programme, and to facilitate the eventual exploitation of this record by the community
  • To provide high-quality training to develop national expertise in the use of autonomous vehicles in the collection of data from remote environments and the integration of such tools in wider programmes of research
  • To stimulate and facilitate the parameterising of sub-ice shelf processes in climate models, and to further demonstrate the value of autonomous vehicles as platforms for data collection among the wider oceanographic and polar community

Following the invitation of outline bids and peer review of fully developed proposals, eight research threads were funded as part of AUI:

Physical Oceanography

  • ISOTOPE: Ice Shelf Oceanography: Transports, Oxygen-18 and Physical Exchanges.
  • Evolution and impact of Circumpolar Deep Water on the Antarctic continental shelf.
  • Oceanographic conditions and processes beneath Ronne Ice Shelf (OPRIS).

Glaciology and Sea Ice

  • Autosub investigation of ice sheet boundary conditions beneath Pine Island Glacier.
  • Observations and modelling of coastal polynya and sea ice processes in the Arctic and Antarctic.
  • Sea ice thickness distribution in the Bellingshausen Sea.

Geology and Geophysics

  • Marine geological processes and sediments beneath floating ice shelves in Greenland and Antarctica: investigations using the Autosub AUV.

Biology

  • Controls on marine benthic biodiversity and standing stock in ice-covered environments.

The National Oceanography Centre Southampton (NOCS) hosted the AUI programme with ten further institutions collaborating in the project. The project ran from April 2000 until the end of March 2005, with some extensions to projects beyond this date because of research cruise delays. The following cruises were the fieldwork component of the AUI project:

Table 1: Details of the RRS James Clark Ross AUI cruises.

Cruise No. Cruise No. synonyms Dates Areas of study
JR20030218 JR84 28 February 2003 to 4 April 2003 Amundsen Sea, Antarctica
JR20040813 JR106, JR106a, JR106N (North) 10 August 2004 to 30 August 2004 Northeast Greenland Continental Shelf, Greenland
JR20040830 JR106b, JR106S (South) 30 August 2004 to 16 September 2004 Kangerlussuaq Fjord, Greenland
JR20050203 JR97, JR097 3 February 2005 to 11 March 2005 Fimbul Ice Shelf and Weddell Sea, Antarctica . This cruise was redirected from the Filcner-Ronne Ice Shelf to the Fimbul Ice Shelf because of unfavourable sea-ice conditions.

All the cruises utilised the AutoSub autonomous, unmanned and untethered underwater vehicle to collect observations beneath sea-ice and floating ice shelves. AutoSub can be fitted with a range of oceanographic sensors such as:

  • Conductivity Temperature Depth (CTD) instruments
  • Acoustic Doppler Current Profillers (ADCP)
  • A water sampler
  • Swath bathymetry systems
  • Cameras

In addition to use of AutoSub during each cruise measurements were taken from ship. These varied by cruise but included:

  • Ship underway measurements and sampling for parameters such as:
    • Salinity
    • Temperature
    • Fluorescence
    • Oxygen 18 isotope enrichment in water
    • Bathymetry using a swath bathymetry system
  • Full-depth CTD casts for with observations of samples taken for parameters such as:
    • Salinity
    • Temperature
    • Fluorescence
    • Optical transmissivity
    • Dissolved oxygen
    • Oxygen 18 isotope enrichment in water
    • Water CFC content
  • Sea floor photography and video using the WASP system
  • Sea floor sampling with trawls/rock dredges
  • Sea ice observations (ASPeCt), drifters and sampling

The AutoSub project also included numerical modelling work undertaken at University College London, UK.

The project included several firsts including the first along-track observations beneath an ice shelf using an autonomous underwater vehicle. The AutoSub vehicle was developed and enhanced throughout this programme and has now become part of the NERC equipment pool for general use by the scientific community. Further information for each cruise can be found in the respective cruise reports (links in Table 1).


Data Activity or Cruise Information

Cruise

Cruise Name JR20040813 (JR106)
Departure Date 2004-08-10
Arrival Date 2004-08-30
Principal Scientist(s)Peter Wadhams (University of Cambridge Department of Applied Mathematics and Theoretical Physics)
Ship RRS James Clark Ross

Complete Cruise Metadata Report is available here


Fixed Station Information


No Fixed Station Information held for the Series


BODC Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
Blank Unqualified
< Below detection limit
> In excess of quoted value
A Taxonomic flag for affinis (aff.)
B Beginning of CTD Down/Up Cast
C Taxonomic flag for confer (cf.)
D Thermometric depth
E End of CTD Down/Up Cast
G Non-taxonomic biological characteristic uncertainty
H Extrapolated value
I Taxonomic flag for single species (sp.)
K Improbable value - unknown quality control source
L Improbable value - originator's quality control
M Improbable value - BODC quality control
N Null value
O Improbable value - user quality control
P Trace/calm
Q Indeterminate
R Replacement value
S Estimated value
T Interpolated value
U Uncalibrated
W Control value
X Excessive difference

SeaDataNet Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
0 no quality control
1 good value
2 probably good value
3 probably bad value
4 bad value
5 changed value
6 value below detection
7 value in excess
8 interpolated value
9 missing value
A value phenomenon uncertain
B nominal value
Q value below limit of quantification