Search the data

Metadata Report for BODC Series Reference Number 1863044

Metadata Summary

Data Description

Data Category Water sample data
Instrument Type
Niskin bottle  discrete water samplers
Instrument Mounting lowered unmanned submersible
Originating Country United Kingdom
Originator Unknown
Originating Organization British Oceanographic Data Centre Bidston (now British Oceanographic Data Centre, Liverpool)
Processing Status banked
Online delivery of data Download available - Ocean Data View (ODV) format
Project(s) North Sea Project 1987-1992

Data Identifiers

Originator's Identifier CH53_CTD_PIGX_16:2022
BODC Series Reference 1863044

Time Co-ordinates(UT)

Start Time (yyyy-mm-dd hh:mm) 1989-05-27 05:48
End Time (yyyy-mm-dd hh:mm) -
Nominal Cycle Interval -

Spatial Co-ordinates

Latitude 52.61935 N ( 52° 37.2' N )
Longitude 3.77433 E ( 3° 46.5' E )
Positional Uncertainty 0.05 to 0.1 n.miles
Minimum Sensor or Sampling Depth 21.4 m
Maximum Sensor or Sampling Depth 21.4 m
Minimum Sensor or Sampling Height 9.5 m
Maximum Sensor or Sampling Height 9.5 m
Sea Floor Depth 30.9 m
Sea Floor Depth Source PEVENT
Sensor or Sampling Distribution Unspecified -
Sensor or Sampling Depth Datum Unspecified -
Sea Floor Depth Datum Unspecified -


BODC CODERankUnitsTitle
ADEPZZ011MetresDepth (spatial coordinate) relative to water surface in the water body
BOTTFLAG1Not applicableSampling process quality flag (BODC C22)
CPHLPR011Milligrams per cubic metreConcentration of chlorophyll-a {chl-a CAS 479-61-8} per unit volume of the water body [particulate >unknown phase] by in-situ chlorophyll fluorometer
SAMPRFNM1DimensionlessSample reference number

Definition of BOTTFLAG

0The sampling event occurred without any incident being reported to BODC.
1The filter in an in-situ sampling pump physically ruptured during sample resulting in an unquantifiable loss of sampled material.
2Analytical evidence (e.g. surface water salinity measured on a sample collected at depth) indicates that the water sample has been contaminated by water from depths other than the depths of sampling.
3The feedback indicator on the deck unit reported that the bottle closure command had failed. General Oceanics deck units used on NERC vessels in the 80s and 90s were renowned for reporting misfires when the bottle had been closed. This flag is also suitable for when a trigger command is mistakenly sent to a bottle that has previously been fired.
4During the sampling deployment the bottle was fired in an order other than incrementing rosette position. Indicative of the potential for errors in the assignment of bottle firing depth, especially with General Oceanics rosettes.
5Water was reported to be escaping from the bottle as the rosette was being recovered.
6The bottle seals were observed to be incorrectly seated and the bottle was only part full of water on recovery.
7Either the bottle was found to contain no sample on recovery or there was no bottle fitted to the rosette position fired (but SBE35 record may exist).
8There is reason to doubt the accuracy of the sampling depth associated with the sample.
9The bottle air vent had not been closed prior to deployment giving rise to a risk of sample contamination through leakage.

Definition of Rank

  • Rank 1 is a one-dimensional parameter
  • Rank 2 is a two-dimensional parameter
  • Rank 0 is a one-dimensional parameter describing the second dimension of a two-dimensional parameter (e.g. bin depths for moored ADCP data)

Problem Reports

No Problem Report Found in the Database

Data Access Policy

Open Data supplied by Natural Environment Research Council (NERC)

You must always use the following attribution statement to acknowledge the source of the information: "Contains data supplied by Natural Environment Research Council."

Narrative Documents

Niskin Bottle

The Niskin bottle is a device used by oceanographers to collect subsurface seawater samples. It is a plastic bottle with caps and rubber seals at each end and is deployed with the caps held open, allowing free-flushing of the bottle as it moves through the water column.

Standard Niskin

The standard version of the bottle includes a plastic-coated metal spring or elastic cord running through the interior of the bottle that joins the two caps, and the caps are held open against the spring by plastic lanyards. When the bottle reaches the desired depth the lanyards are released by a pressure-actuated switch, command signal or messenger weight and the caps are forced shut and sealed, trapping the seawater sample.

Lever Action Niskin

The Lever Action Niskin Bottle differs from the standard version, in that the caps are held open during deployment by externally mounted stainless steel springs rather than an internal spring or cord. Lever Action Niskins are recommended for applications where a completely clear sample chamber is critical or for use in deep cold water.

Clean Sampling

A modified version of the standard Niskin bottle has been developed for clean sampling. This is teflon-coated and uses a latex cord to close the caps rather than a metal spring. The clean version of the Levered Action Niskin bottle is also teflon-coated and uses epoxy covered springs in place of the stainless steel springs. These bottles are specifically designed to minimise metal contamination when sampling trace metals.


Bottles may be deployed singly clamped to a wire or in groups of up to 48 on a rosette. Standard bottles have a capacity between 1.7 and 30 L, while Lever Action bottles have a capacity between 1.7 and 12 L. Reversing thermometers may be attached to a spring-loaded disk that rotates through 180° on bottle closure.

CTD Calibration Sample Data Set as part of the North Sea Project

Document History

Converted from CDROM documentation.

Sampling strategy and methodology

During the North Sea Project a significant data set of samples used to calibrate the CTD sensors accrued. This document describes the methods used to obtain these data.


A salinity sample, usually from the bottle fired nearest to the sea floor, was drawn from each cast after several washings with the sample sea water into a screw topped glass bottle with an airtight plastic seal. Samples were transferred in batches to the ship's constant temperature laboratory where they were left for at least 24 hours to attain thermal equilibrium.

Salinities were measured on a Guildline Autosal salinometer using standard sea water as a reference standard. Occasionally, if supplies of standard sea water ran low, batches of sea water calibrated against standard sea water were used as a secondary standard.

Quality control comprised the rejection of salinity values shown to be erroneous during the CTD calibration exercise.


On each CTD cast one of the sample bottles (usually the first to be fired at the bottom of the cast) was fitted with a frame containing two SIS RTM-4002 digital thermometers which reversed, triggering the thermometers, when the bottle was fired.

The readings were corrected using manufacturers calibration sheets. If the calibrated values differed by more than 0.009C, the data were checked and erroneous values rejected. Checks were also made to eliminate erroneous data resulting from failure to reset the thermometers between casts. The two values (if both deemed good) were averaged. Any further values shown to be erroneous during the CTD calibration exercise were deleted from the data set.

Dissolved Oxygen

Three replicate samples were drawn from the water bottles into 60 ml borosilicate glass stoppered bottles and 0.5ml of each Winkler reagent added using BCD multi-addition pipettes. The reagents were prepared according to the recommendations of Carrit and Carpenter (1966). After mixing, the oxygen bottles were stored under fresh water until analysed.

Analysis was undertaken on board using the manual photometric endpoint detector method described by Bryan et al (1976).

Chlorophyll and Phaeopigment

Extracted chlorophyll and phaeopigments for all cruises where chlorophylls were done with the exception of CH72A and CH72C were determined in the same laboratory, Plymouth Marine Laboratory, using the following protocol.

Up to 2 litres of water for each sample were filtered through glass fibre filters (GFF) and frozen quickly on board ship. The samples were returned frozen to the laboratory where they were extracted with 90% acetone and assayed in a scanning spectrophotometer. The concentrations of chlorophyll and phaeopigments were calculated using the SCOR-UNESCO algorithms (Strickland and Parsons, 1968).

The chlorophyll and phaeopigment determinations on the two legs of Challenger 72 (A and C) in 1990 were undertaken by a different group using a totally different protocol as follows.

Up to 0.5 litres of sea water were filtered through Whatman GFF filters taking care to avoid unnecessary exposure to light. Filters were then extracted, on board ship, in the dark in 90% Analar grade acetone, 10% distilled water, neutralised with sodium bicarbonate.

Fluorescence was measured at sea using a Turner Designs bench fluorometer, calibrated using spectrophotometrically determined standards, before and after acidification with 8% HCl. Chlorophyll and phaeopigment concentrations were calculated using the equation in Tett (1987). The resulting measurement of 'chlorophyll' is the sum of chlorophyll-a and chlorophyllide-a.

Total and Organic Sediment

Two litres of water were drawn from each CTD bottle into a large measuring cylinder. Each sample was filtered using a vacuum filtration system onto a pre-weighed filter. On the early cruises (CH28, CH33, CH35, CH37 and CH39) Nucleopore filters were used. On later cruises these were replaced by GFF filters. Each sample was carefully washed with distilled water to remove salt, removed from the filtration system and air dried.

In some cases where samples had a large sediment load it proved impossible to filter two litres. In these cases, as much of the sample as possible was filtered and the volume filtered determined by noting the volume of water remaining in the measuring cylinder.

After the cruise, each sample was dried and reweighed to constant weight to give the total suspended matter concentration. The samples were then ashed and the organic sediment content obtained from the loss of weight on ignition. The polycarbonate Nucleopore filters used at the beginning of the project decomposed on ignition. Consequently, there are no organic sediment data for project cruises before Challenger 41.


Bryan, J.R., Riley, J.P. and Williams, P.J.LeB. (1976). A Winkler procedure for making precise measurements of oxygen concentration for productivity and related studies. J. Exp. Mar. Biol. Ecol. 21, 191-197.

Carrit, D.E. and Carpenter, J.H. (1966). Comparison and evaluation of currently employed modifications of the Winkler method for determining dissolved oxygen in sea water. J. Mar. Res. 24, 286-318.

Strickland, J.D.H. and Parsons, T.R. (1968). A practical handbook of sea water analysis. Bull.Fish.Res.Bd.Can.:167.

Tett, P.B. (1987). Plankton: in Baker, J.M. and Wolff, W.J. (eds.) Biological surveys of estuaries and coasts. CUP, Cambridge, U.K. 280-341.

Project Information

North Sea Project

The North Sea Project (NSP) was the first Marine Sciences Community Research project of the Natural Environment Research Council (NERC). It evolved from a NERC review of shelf sea research, which identified the need for a concerted multidisciplinary study of circulation, transport and production.

The ultimate aim of the NERC North Sea Project was the development of a suite of prognostic water quality models to aid management of the North Sea. To progress towards water quality models, three intermediate objectives were pursued in parallel:

  • Production of a 3-D transport model for any conservative passive constituent, incorporating improved representations of the necessary physics - hydrodynamics and dispersion;
  • Identifying and quantifying non-conservative processes - sources and sinks determining the cycling and fate of individual constituents;
  • Defining a complete seasonal cycle as a database for all the observational studies needed to formulate, drive and test models.

Proudman Oceanographic Laboratory hosted the project, which involved over 200 scientists and support staff from NERC and other Government funded laboratories, as well as seven universities and polytechnics.

The project ran from 1987 to 1992, with marine field data collection between April 1988 and October 1989. One shakedown (CH28) and fifteen survey cruises (Table 1), each lasting 12 days and following the same track, were repeated monthly. The track selected covered the summer-stratified waters of the north and the homogeneous waters in the Southern Bight in about equal lengths together with their separating frontal band from Flamborough head to Dogger Bank, the Friesian Islands and the German Bight. Mooring stations were maintained at six sites for the duration of the project.

Table 1: Details of NSP Survey Cruises on RRS Challenger
Cruise No. Date
CH28 29/04/88 - 15/05/88
CH33 04/08/88 - 16/08/88
CH35 03/09/88 - 15/09/88
CH37 02/10/88 - 14/10/88
CH39 01/11/88 - 13/11/88
CH41 01/12/88 - 13/12/88
CH43 30/12/88 - 12/01/89
CH45 28/01/89 - 10/02/89
CH47 27/02/89 - 12/03/89
CH49 29/03/89 - 10/04/89
CH51 27/04/89 - 09/05/89
CH53 26/05/89 - 07/06/89
CH55 24/06/89 - 07/07/89
CH57 24/07/89 - 06/08/89
CH59 23/08/89 - 04/09/89
CH61 21/09/89 - 03/10/89

Alternating with the survey cruises were process study cruises (Table 2), which investigated some particular aspect of the science of the North Sea. These included fronts (nearshore, circulation and mixing), sandwaves and sandbanks, plumes (Humber, Wash, Thames and Rhine), resuspension, air-sea exchange, primary productivity and blooms/chemistry.

Table 2: Details of NSP Process cruises on RRS Challenger
Cruise No. Date Process
CH34 18/08/88 - 01/09/88 Fronts - nearshore
CH36 16/09/88 - 30/09/88 Fronts - mixing
CH56 08/07/89 - 22/07/89 Fronts - circulation
CH58 07/08/89 - 21/08/89 Fronts - mixing
CH38 24/10/88 - 31/10/88 Sandwaves
CH40 15/11/88 - 29/11/88 Sandbanks
CH42 15/12/88 - 29/12/88 Plumes/Sandbanks
CH46 12/02/89 - 26/02/89 Plumes/Sandwaves
CH44 13/01/89 - 27/01/89 Resuspension
CH52 11/05/89 - 24/05/89 Resuspension
CH60 06/09/89 - 19/09/89 Resuspension
CH48 13/03/89 - 27/03/89 Air/sea exchanges
CH62 05/10/89 - 19/10/89 Air/sea exchanges
CH50 12/04/89 - 25/04/89 Blooms/chemistry
CH54 09/06/89 - 22/06/89 Production

In addition to the main data collection period, a series of cruises took place between October 1989 and October 1990 that followed up work done on previous cruises (Table 3). Process studies relating to blooms, plumes (Humber, Wash and Rhine), sandwaves and the flux of contaminants through the Dover Strait were carried out as well as two `survey' cruises.

Table 3: Details of NSP `Follow up' cruises on RRS Challenger
Cruise No. Date Process
CH62A 23/10/89 - 03/11/89 Blooms
CH64 03/04/90 - 03/05/90 Blooms
CH65 06/05/90 - 17/05/90 Humber plume
CH66A 20/05/90 - 31/05/90 Survey
CH66B 03/06/90 - 18/06/90 Contaminants through Dover Strait
CH69 26/07/90 - 07/08/90 Resuspension/Plumes
CH72A 20/09/90 - 02/10/90 Survey
CH72B 04/10/90 - 06/10/90 Sandwaves/STABLE
CH72C 06/10/90 - 19/10/90 Rhine plume

The data collected during the observational phase of the North Sea Project comprised one of the most detailed sets of observations ever undertaken in any shallow shelf sea at that time.

Data Activity or Cruise Information

Data Activity

Start Date (yyyy-mm-dd) 1989-05-27
End Date (yyyy-mm-dd) 1989-05-27
Organization Undertaking ActivityDunstaffnage Marine Laboratory (now Scottish Association for Marine Science)
Country of OrganizationUnited Kingdom
Originator's Data Activity IdentifierCH53_CTD_2022
Platform Categorylowered unmanned submersible

BODC Sample Metadata Report for CH53_CTD_2022

Sample reference number Nominal collection volume(l) Bottle rosette position Bottle firing sequence number Minimum pressure sampled (dbar) Maximum pressure sampled (dbar) Depth of sampling point (m) Bottle type Sample quality flag Bottle reference Comments
293607   10.00       24.20   24.80   21.40 Niskin bottle No problem reported    
293610   10.00       17.50   18.20   14.80 Niskin bottle No problem reported    
293624   10.00        2.70    4.50     .70 Niskin bottle No problem reported    

Please note:the supplied parameters may not have been sampled from all the bottle firings described in the table above. Cross-match the Sample Reference Number above against the SAMPRFNM value in the data file to identify the relevant metadata.

Related Data Activity activities are detailed in Appendix 1


Cruise Name CH53
Departure Date 1989-05-26
Arrival Date 1989-06-07
Principal Scientist(s)James Watson (Dunstaffnage Marine Laboratory)
Ship RRS Challenger

Complete Cruise Metadata Report is available here

Fixed Station Information

Fixed Station Information

Station NameNSP Survey F and CTD Site AE
CategoryOffshore area
Latitude52° 37.00' N
Longitude3° 46.00' E
Water depth below MSL30.0 m

North Sea Project Survey Mooring Site F and CTD Site AE

Site F was one of six fixed stations where moorings were deployed during the North Sea Project survey. This location is also one of 123 North Sea Project CTD Sites.

The site was situated in a region of strong tidal currents, up to a maximum of 1.0 m/s and in relatively shallow (30 m) water. These factors produced well mixed conditions through the water column, throughout the year.

The rigs deployed here line within a box bounded by co-ordinates 52° 36.50'N, 003° 45.20'E at the southwest corner and 52° 37.10'N, 003° 46.14'E at the northeast corner. The magnetic variation at this site was 3.1°W.

The deployment history is summarised below:

Rig ID Meter
C33FC CM (S4) 12.0 05/08/88 30.6 Good data
C35FC CM (S4) 12.7 06/09/88 26.4 Good data
C37FC CM (S4) 12.0 04/10/88 28.6 Good data
C39FC CM (S4) 12.0 20/11/88 29.8 Good data
C43FC CM (S4) 12.0 07/01/89 22.0 Good data
7.0 9.6 Short record
C51FC CM (S4) 12.0 28/04/89 0.0 No data recorded
7.0 0.7 Velocity record short, rotor fouled by fishing line
29.6 Good data for Temperature, Conductivity and Pressure
C53FC CM (S4) 12.0 29/05/89 27.1 Good data
C55FC CM (S4) 12.0 25/06/89 0.0 Data corrupt
7.0 30.1 Good data
C57FC CM (S4) 12.0 27/07/89 28.2 Good data
C59FC CM (S4) 12.0 25/08/89 27.3 Good data

Related Fixed Station activities are detailed in Appendix 2

BODC Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
Blank Unqualified
< Below detection limit
> In excess of quoted value
A Taxonomic flag for affinis (aff.)
B Beginning of CTD Down/Up Cast
C Taxonomic flag for confer (cf.)
D Thermometric depth
E End of CTD Down/Up Cast
G Non-taxonomic biological characteristic uncertainty
H Extrapolated value
I Taxonomic flag for single species (sp.)
K Improbable value - unknown quality control source
L Improbable value - originator's quality control
M Improbable value - BODC quality control
N Null value
O Improbable value - user quality control
P Trace/calm
Q Indeterminate
R Replacement value
S Estimated value
T Interpolated value
U Uncalibrated
W Control value
X Excessive difference

SeaDataNet Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
0 no quality control
1 good value
2 probably good value
3 probably bad value
4 bad value
5 changed value
6 value below detection
7 value in excess
8 interpolated value
9 missing value
A value phenomenon uncertain
B nominal value
Q value below limit of quantification

Appendix 1: CH53_CTD_2022

Related series for this Data Activity are presented in the table below. Further information can be found by following the appropriate links.

If you are interested in these series, please be aware we offer a multiple file download service. Should your credentials be insufficient for automatic download, the service also offers a referral to our Enquiries Officer who may be able to negotiate access.

Series IdentifierData CategoryStart date/timeStart positionCruise
1696674Water sample data1989-05-27 05:48:0052.61935 N, 3.77433 ERRS Challenger CH53

Appendix 2: NSP Survey F and CTD Site AE

Related series for this Fixed Station are presented in the table below. Further information can be found by following the appropriate links.

If you are interested in these series, please be aware we offer a multiple file download service. Should your credentials be insufficient for automatic download, the service also offers a referral to our Enquiries Officer who may be able to negotiate access.

Series IdentifierData CategoryStart date/timeStart positionCruise
782725CTD or STD cast1988-05-09 00:21:0053.51767 N, 0.68333 ERRS Challenger CH28
768977CTD or STD cast1988-08-05 06:33:0052.6215 N, 3.76883 ERRS Challenger CH33
248590Currents -subsurface Eulerian1988-08-05 14:10:0052.6117 N, 3.7533 ENot applicable
591959Currents -subsurface Eulerian1988-08-05 14:11:0052.6117 N, 3.7533 ENot applicable
769169CTD or STD cast1988-08-07 08:30:0052.622 N, 3.77583 ERRS Challenger CH33
783010CTD or STD cast1988-09-04 02:17:0052.61267 N, 3.7635 ERRS Challenger CH35
783243CTD or STD cast1988-09-06 01:01:0052.62033 N, 3.76667 ERRS Challenger CH35
592047Currents -subsurface Eulerian1988-09-06 06:27:0052.6083 N, 3.7533 ENot applicable
248750Currents -subsurface Eulerian1988-09-06 06:30:0052.6083 N, 3.7533 ENot applicable
784246CTD or STD cast1988-10-02 17:55:0052.62133 N, 3.76167 ERRS Challenger CH37
784467CTD or STD cast1988-10-04 20:20:0052.6175 N, 3.76617 ERRS Challenger CH37
248762Currents -subsurface Eulerian1988-10-04 21:00:0052.6155 N, 3.7687 ENot applicable
592035Currents -subsurface Eulerian1988-10-04 21:00:0052.6155 N, 3.7687 ENot applicable
821271CTD or STD cast1988-11-02 03:35:0052.615 N, 3.759 ERRS Challenger CH39
248608Currents -subsurface Eulerian1988-11-02 12:40:0052.617 N, 3.7657 ENot applicable
592023Currents -subsurface Eulerian1988-11-02 12:40:0052.617 N, 3.7657 ENot applicable
821480CTD or STD cast1988-11-04 02:58:0052.60867 N, 3.7605 ERRS Challenger CH39
785680CTD or STD cast1988-12-02 08:39:0052.6195 N, 3.76783 ERRS Challenger CH41
785145CTD or STD cast1988-12-04 08:56:0052.6155 N, 3.7705 ERRS Challenger CH41
786357CTD or STD cast1989-01-04 21:01:0052.6145 N, 3.76783 ERRS Challenger CH43
786554CTD or STD cast1989-01-07 08:30:0052.61533 N, 3.7625 ERRS Challenger CH43
248621Currents -subsurface Eulerian1989-01-07 09:15:0052.6183 N, 3.7583 ENot applicable
591972Currents -subsurface Eulerian1989-01-07 09:15:0052.6183 N, 3.7583 ENot applicable
791034CTD or STD cast1989-01-29 05:21:0052.6165 N, 3.76833 ERRS Challenger CH45
1859395Water sample data1989-01-29 05:26:0052.61658 N, 3.76834 ERRS Challenger CH45
791046CTD or STD cast1989-01-29 05:44:0052.61933 N, 3.775 ERRS Challenger CH45
1859402Water sample data1989-01-29 05:46:0052.61925 N, 3.775 ERRS Challenger CH45
791255CTD or STD cast1989-01-31 09:29:0052.61533 N, 3.76417 ERRS Challenger CH45
1859611Water sample data1989-01-31 09:32:0052.61537 N, 3.76422 ERRS Challenger CH45
792246CTD or STD cast1989-02-28 01:52:0052.613 N, 3.765 ERRS Challenger CH47
792479CTD or STD cast1989-03-02 03:33:0052.61517 N, 3.75883 ERRS Challenger CH47
1857339Water sample data1989-03-02 03:36:0052.61519 N, 3.7589 ERRS Challenger CH47
793772CTD or STD cast1989-03-30 03:52:0052.61333 N, 3.7665 ERRS Challenger CH49
1858459Water sample data1989-03-30 03:57:0052.61336 N, 3.7665 ERRS Challenger CH49
793993CTD or STD cast1989-04-01 04:44:0052.614 N, 3.76267 ERRS Challenger CH49
1858668Water sample data1989-04-01 04:48:0052.61395 N, 3.76264 ERRS Challenger CH49
794714CTD or STD cast1989-04-28 09:49:0052.61967 N, 3.77083 ERRS Challenger CH51
592011Currents -subsurface Eulerian1989-04-28 10:50:0052.617 N, 3.7665 ENot applicable
794935CTD or STD cast1989-04-30 09:16:0052.62567 N, 3.77067 ERRS Challenger CH51
1860789Water sample data1989-04-30 09:22:0052.62575 N, 3.77065 ERRS Challenger CH51
796002CTD or STD cast1989-05-27 04:50:0052.61317 N, 3.76517 ERRS Challenger CH53
1863032Water sample data1989-05-27 04:53:0052.61322 N, 3.76522 ERRS Challenger CH53
796014CTD or STD cast1989-05-27 05:45:0052.61933 N, 3.77433 ERRS Challenger CH53
796247CTD or STD cast1989-05-29 04:03:0052.61717 N, 3.7645 ERRS Challenger CH53
1863277Water sample data1989-05-29 04:08:0052.61719 N, 3.76454 ERRS Challenger CH53
248737Currents -subsurface Eulerian1989-05-29 05:10:0052.6157 N, 3.769 ENot applicable
591996Currents -subsurface Eulerian1989-05-29 05:10:0052.6157 N, 3.769 ENot applicable
797343CTD or STD cast1989-06-25 01:30:0052.61217 N, 3.77383 ERRS Challenger CH55
1656310Water sample data1989-06-25 01:33:0052.61211 N, 3.77385 ERRS Challenger CH55
1865548Water sample data1989-06-25 01:33:0052.61211 N, 3.77385 ERRS Challenger CH55
797380CTD or STD cast1989-06-25 08:30:0052.6155 N, 3.76967 ERRS Challenger CH55
1656358Water sample data1989-06-25 08:35:0052.61548 N, 3.76965 ERRS Challenger CH55
1865597Water sample data1989-06-25 08:35:0052.61548 N, 3.76965 ERRS Challenger CH55
591984Currents -subsurface Eulerian1989-06-25 09:10:0052.6147 N, 3.7658 ENot applicable
797552CTD or STD cast1989-06-26 23:38:0052.61733 N, 3.76333 ERRS Challenger CH55
1656543Water sample data1989-06-26 23:42:0052.61734 N, 3.7634 ERRS Challenger CH55
1865770Water sample data1989-06-26 23:42:0052.61734 N, 3.7634 ERRS Challenger CH55
798703CTD or STD cast1989-07-25 03:45:0052.61683 N, 3.76783 ERRS Challenger CH57
1245577Water sample data1989-07-25 03:47:0052.61676 N, 3.76788 ERRS Challenger CH57
1709035Water sample data1989-07-25 03:47:0052.61676 N, 3.76788 ERRS Challenger CH57
1864361Water sample data1989-07-25 03:47:0052.61676 N, 3.76788 ERRS Challenger CH57
248798Currents -subsurface Eulerian1989-07-27 05:10:0052.6167 N, 3.7658 ENot applicable
591960Currents -subsurface Eulerian1989-07-27 05:10:0052.6167 N, 3.7658 ENot applicable
798912CTD or STD cast1989-07-27 05:24:0052.61717 N, 3.77583 ERRS Challenger CH57
1245774Water sample data1989-07-27 05:26:0052.6171 N, 3.77581 ERRS Challenger CH57
1709232Water sample data1989-07-27 05:26:0052.6171 N, 3.77581 ERRS Challenger CH57
1864570Water sample data1989-07-27 05:26:0052.6171 N, 3.77581 ERRS Challenger CH57
801245CTD or STD cast1989-08-24 02:44:0052.6155 N, 3.75367 ERRS Challenger CH59
1855935Water sample data1989-08-24 02:48:0052.61552 N, 3.75363 ERRS Challenger CH59
801282CTD or STD cast1989-08-24 08:42:0052.61667 N, 3.78933 ERRS Challenger CH59
1855972Water sample data1989-08-24 08:44:0052.61665 N, 3.7894 ERRS Challenger CH59
801429CTD or STD cast1989-08-25 23:20:0052.618 N, 3.7665 ERRS Challenger CH59
1856127Water sample data1989-08-25 23:23:0052.61803 N, 3.7665 ERRS Challenger CH59
248805Currents -subsurface Eulerian1989-08-25 23:45:0052.6147 N, 3.7682 ENot applicable
592059Currents -subsurface Eulerian1989-08-25 23:45:0052.6147 N, 3.7682 ENot applicable
799927CTD or STD cast1989-09-22 08:19:0052.62 N, 3.76617 ERRS Challenger CH61
1854692Water sample data1989-09-22 08:24:0052.62001 N, 3.76616 ERRS Challenger CH61
800101CTD or STD cast1989-09-23 21:23:0052.61817 N, 3.76933 ERRS Challenger CH61
1854864Water sample data1989-09-23 21:27:0052.61823 N, 3.76935 ERRS Challenger CH61
802562CTD or STD cast1990-05-21 11:50:0052.619 N, 3.76633 ERRS Challenger CH66A
802710CTD or STD cast1990-05-23 14:47:0052.61917 N, 3.77133 ERRS Challenger CH66A
827881CTD or STD cast1990-06-16 07:35:0052.63783 N, 3.77633 ERRS Challenger CH66B
804476CTD or STD cast1990-09-22 06:16:0052.61767 N, 3.77133 ERRS Challenger CH72A
804741CTD or STD cast1990-09-25 18:29:0052.62517 N, 3.76583 ERRS Challenger CH72A
829549CTD or STD cast1990-10-14 16:27:0052.6185 N, 3.76233 ERRS Challenger CH72C