Metadata Report for BODC Series Reference Number 431377
Metadata Summary
Problem Reports
Data Access Policy
Narrative Documents
Project Information
Data Activity or Cruise Information
Fixed Station Information
BODC Quality Flags
SeaDataNet Quality Flags
Metadata Summary
Data Description |
|||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||
Data Identifiers |
|||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||
Time Co-ordinates(UT) |
|||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||
Spatial Co-ordinates | |||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||
Parameters |
|||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||
|
Problem Reports
No Problem Report Found in the Database
Data Access Policy
Open Data
These data have no specific confidentiality restrictions for users. However, users must acknowledge data sources as it is not ethical to publish data without proper attribution. Any publication or other output resulting from usage of the data should include an acknowledgment.
If the Information Provider does not provide a specific attribution statement, or if you are using Information from several Information Providers and multiple attributions are not practical in your product or application, you may consider using the following:
"Contains public sector information licensed under the Open Government Licence v1.0."
Narrative Documents
Aanderaa Recording Current Meter Model 7/8
Manufacturer's specifications: recording unit height 49.5cm (RCM8 52.0cm), diameter 12.8cm, vane size 48.5x50.0cm. Meter is designed for depths down to 2000m (RCM8 6000m). It incorporates a spindle which is shackled to the mooring line. The meter is attached to the spindle through a gimbal mounting which permits a maximum 27° deviation of the spindle from the vertical, the meter still remaining horizontal.
Meter comprises :
-
Paddle wheel rotor magnetically coupled to an electronic counter
-
Vane, which aligns instrument with current flow, has a balance weight ensuring static balance and tail fins to ensure dynamic balance in flows up to 250cm/s.
-
Magnetic compass (needle is clamped to potentiometer ring) - direction recorded with 0.35° resolution, 5° accuracy for speeds 5 to 100cm/s, 7.5° accuracy for remaining speeds within 2.5 to 200cm/s range.
-
Quartz clock, accuracy better than 2 sec/day within temperature range 0 to 20°C.
-
Thermistor (temperature sensor), standard range -2.46 to 21.48°C (max on high range 36.04°C), accuracy 0.05°C, resolution 0.1 per cent of range, 63 per cent response time 12sec.
-
Inductive cell conductivity sensor (optional), range 0 to 70mmho/cm standard resolution 0.1 per cent of range.
-
Silicon piezoresistive bridge, standard range 0 to 3000 psi (RCM8 to 9000 psi), resolution 0.1% of range.
-
Self balancing potentiometer which converts the output from each sensor into a 10 bit binary number for storage on magnetic tape.
-
Associated electronics.
A built-in clock triggers the instrument at preset intervals and up to six channels are sampled in sequence. Channel 1 is a fixed reference reading for control purposes and data identification. Channels 2, 3 and 4 represent measurement of temperature, conductivity and pressure. Channels 5 and 6 represent the VECTOR AVERAGED current speed and direction since the previous triggering of the instrument. The number of rotor revolutions and the direction is sampled every 12 seconds and broken into North and East components. Successive components are added and recorded as speed and direction. For recording intervals longer than 10 minutes, speed and direction are sampled 1/50th of recording interval.
It has become common practice in some laboratories to deploy these meters as temperature and conductivity loggers without current measuring capabilities.
The following link will provide the manufacturer specifications:
Manufacturer specificationsAanderaa Current Meter Data Processing
Data Originator's Processing
The following procedures are carried out before the data were supplied to BODC.
Data were downloaded from the instrument logger, and factory calibrations were applied to the current speed channel, and the pressure, conductivity and temperature channels when fitted. Where available, laboratory calibrations of the current direction channels were used; factory formulae were used in their absence. Where no form factor was known for the conductivity sensor, a value of 2.8 was used.
Please note (concerns vector averaged current data): The current data are averaged by the logger over the sampling interval, whereas the pressure, temperature and conductivity data are single point measurements taken at the end of the interval. The data originator has moved the time stamps to the mid-point of the vector averaging sampling interval for all channels without interpolation.
BODC Data Processing and Quality Control
Where pressure sensors were fitted: the data record was compared with the pressure computed from the water depth on deployment and rig geometry. The time series was visually screened for evidence of rig movement (e.g. trawling) and excessive leaning (perhaps due to strong currents).
Where temperature sensors were fitted: the data record was compared with calibrated CTD data taken in the vicinity and checked for agreement within a few tenths of a degree Celsius. Obvious spikes were flagged. Periods of excessively noisy data were noted.
Where conductivity sensors were fitted: salinity (PSS-78) was computed from in-situ temperature and conductivity and a nominal pressure computed from the water depth on deployment and rig geometry. Obvious spikes were flagged.
BODC Current Meter Screening
BODC screen both the series header qualifying information and the parameter values in the data cycles themselves.
Header information is inspected for:
- Irregularities such as unfeasible values
- Inconsistencies between related information. For example:
- Depths of meter and sea bed.
- Times for mooring deployment and for start/end of data series.
- Length of record or number of data cycles, the cycle interval, the clock error and the period over which accrued.
- Parameters stated as measured and the parameters actually present in the data cycles.
- Originator's comments on meter/mooring performance and data quality.
Documents are written by BODC highlighting irregularities which cannot be resolved.
Data cycles are inspected using time series plots of all parameters. Currents are additionally inspected using vector scatter plots and time series plots of North and East velocity components. These presentations undergo intrinsic and extrinsic screening to detect infeasible values within the data cycles themselves and inconsistencies as seen when comparing characteristics of adjacent data sets displaced with respect to depth, position or time. Values suspected of being of non- oceanographic origin may be tagged with the BODC flag denoting suspect value.
The following types of irregularity, each relying on visual detection in the time series plot, are amongst those which may be flagged as suspect:
- Spurious data at the start or end of the record.
- Obvious spikes occurring in periods free from meteorological disturbance.
- A sequence of constant values in consecutive data cycles.
If a large percentage of the data is affected by irregularities, deemed abnormal, then instead of flagging the individual suspect values, a caution may be documented. Likewise documents will highlight irregularities seen in the current vector scatter plots such as incongruous centre holes, evidence of mooring 'knock-down', abnormal asymmetry in tidally dominated records or gaps as when a range of speeds or directions go unregistered due to meter malfunction.
The term 'knock-down' refers to the situation when the 'drag' exerted on a mooring at high current speeds may cause instruments to tilt beyond the angle at which they are intended to operate. At this point the efficiency of the current sensors to accurately record the flow is reduced.
Inconsistencies between the characteristics of the data set and those of its neighbours are sought, and where necessary, documented. This covers inconsistencies in the following:
- Maximum and minimum values of parameters (spikes excluded).
- The orientation and symmetry of the current vector scatter plot.
- The direction of rotation of the current vectors.
- The approximate amplitude and periodicity of the tidal currents.
- The occurrence of meteorological events and, finally, for series for which no time check was possible, the phase.
This intrinsic and extrinsic screening of the parameter values seeks to confirm the qualifying information and the source laboratory's comments on the series. In screening and collating information, every care is taken to ensure that errors of BODC making are not introduced.
Data Processing Notes
Instrument recorded pressure appears not to accurately reflect instrument depth. Therefore salinity has been computed using a nominal pressure derived from the rig configuration and water depth on deployment.
Project Information
Land Ocean Interaction Study (LOIS)
Introduction
The Land Ocean Interaction Study (LOIS) was a Community Research Project of the Natural Environment Research Council (NERC). The broad aim of LOIS was to gain an understanding of, and an ability to predict, the nature of environmental change in the coastal zone around the UK through an integrated study from the river catchments through to the shelf break.
LOIS was a collaborative, multidisciplinary study undertaken by scientists from NERC research laboratories and Higher Education institutions. The LOIS project was managed from NERC's Plymouth Marine Laboratory.
The project ran for six years from April 1992 until April 1998 with a further modelling and synthesis phase beginning in April 1998 and ending in April 2000.
Project Structure
LOIS consisted of the following components:
- River-Atmosphere-Coast Study (RACS)
- RACS(A) - Atmospheric sub-component
- RACS(C) - Coasts sub-component
- RACS(R) - Rivers sub-component
- BIOTA - Terrestrial salt marsh study
- Land Ocean Evolution Perspective Study (LOEPS)
- Shelf-Edge Study (SES)
- North Sea Modelling Study (NORMS)
- Data Management (DATA)
Marine Fieldwork
Marine field data were collected between September 1993 and September 1997 as part of RACS(C) and SES. The RACS data were collected throughout this period from the estuaries and coastal waters of the UK North Sea coast from Great Yarmouth to the Tweed. The SES data were collected between March 1995 and September 1996 from the Hebridean slope. Both the RACS and SES data sets incorporate a broad spectrum of measurements collected using moored instruments and research vessel surveys.
LOIS Shelf Edge Study (LOIS - SES)
Introduction
SES was a component of the NERC Land Ocean Interaction Study (LOIS) Community Research Programme that made intensive measurements from the shelf break in the region known as the Hebridean Slope from March 1995 to September 1996.
Scientific Rationale
SES was devoted to the study of interactions between the shelf seas and the open ocean. The specific objectives of the project were:
-
To identify the time and space scales of ocean-shelf momentum transmission and to quantify the contributions to ocean-shelf water exchange by physical processes.
-
To estimate fluxes of water, heat and certain dissolved and suspended constituents across a section of the shelf edge with special emphasis on net carbon export from, and nutrient import to, the shelf.
-
To incorporate process understanding into models and test these models by comparison with observations and provide a basis for estimation of fluxes integrated over time and the length of the shelf.
Fieldwork
The SES fieldwork was focussed on a box enclosing two sections across the shelf break at 56.4-56.5 °N and 56.6-56.7 °N. Moored instrument arrays were maintained throughout the experiment at stations with water depths ranging from 140 m to 1500 m, although there were heavy losses due to the intensive fishing activity in the area. The moorings included meteorological buoys, current meters, transmissometers, fluorometers, nutrient analysers (but these never returned any usable data), thermistor chains, colour sensors and sediment traps.
The moorings were serviced by research cruises at approximately three-monthly intervals. In addition to the mooring work this cruises undertook intensive CTD, water bottle and benthic surveys with cruise durations of up to 6 weeks (3 legs of approximately 2 weeks each).
Moored instrument activities associated with SES comprised current measurements in the North Channel in 1993 and the Tiree Passage from 1995-1996. These provided boundary conditions for SES modelling activities.
Additional data were provided through cruises undertaken by the Defence Evaluation and Research Agency (DERA) in a co-operative programme known as SESAME.
Data Activity or Cruise Information
Data Activity
Start Date (yyyy-mm-dd) | 1995-08-16 |
End Date (yyyy-mm-dd) | 1995-09-02 |
Organization Undertaking Activity | Proudman Oceanographic Laboratory (now National Oceanography Centre, Liverpool) |
Country of Organization | United Kingdom |
Originator's Data Activity Identifier | POLRIG#704 |
Platform Category | subsurface mooring |
Proudman Oceanographic Laboratory Moored Instrument Rig #704
This rig was deployed as part of the LOIS Shelf-Edge Study at site N300.
Rig position: | 56° 37.54'N 09° 01.15'W |
---|---|
Deployed: | 16 Aug 1995 16:07 from RRS Challenger (cruise CH121A) |
Recovered: | 02 Sep 1995 14:40 onto RRS Challenger (cruise CH121C) |
The instruments were anchored by 1000kg of chain and kept erect by a 48" diameter buoy attached 33m below the sea surface.
Instruments deployed on the rig
Height above Sea Bed | Instrument |
---|---|
254m | Aanderaa current meter (#9603) |
253m to 153m | 100m thermistor chain (#1688) |
145m | Aanderaa current meter (#9450) |
144m to 44m | 100m thermistor chain (#1690) |
7m | Aanderaa current meter (#11814) fitted with SeaTech transmissometer (#556) |
Related Data Activity activities are detailed in Appendix 1
Cruise
Cruise Name | CH121A |
Departure Date | 1995-08-10 |
Arrival Date | 1995-08-18 |
Principal Scientist(s) | John H Simpson (University of Wales, Bangor School of Ocean Sciences) |
Ship | RRS Challenger |
Complete Cruise Metadata Report is available here
Fixed Station Information
Fixed Station Information
Station Name | LOIS(SES) N300 |
Category | Offshore location |
Latitude | 56° 37.45' N |
Longitude | 9° 1.35' W |
Water depth below MSL | 300.0 m |
LOIS (SES) Mooring and CTD Site N300
Site N300 was a fixed station where moorings were deployed during the Land-Ocean Interaction Study (LOIS) Shelf Edge Study (SES). It was also one of nineteen CTD sites on repeat section N, across the Hebridean Slope, occupied by cruises between March 1995 and September 1996.
Instrument Deployment History
The following tables summarise the instruments deployed at this site for which data may be available.
1995
Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | |
---|---|---|---|---|---|---|---|---|---|---|
CM | a | a | b | |||||||
TChn | a |
1996
Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | |
---|---|---|---|---|---|---|---|---|
CM | c | c | d | e | e | |||
TChn |
Each different letter in the tables above corresponds to an individual instrument record.
Glossary
- CM = Current meter (Aanderaa or S4)
- TChn = Thermistor chain
Note
- Transmissometers may have been fitted to some of the current meters.
- Only periods for which useful data were returned are shown.
Related Fixed Station activities are detailed in Appendix 2
BODC Quality Control Flags
The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:
Flag | Description |
---|---|
Blank | Unqualified |
< | Below detection limit |
> | In excess of quoted value |
A | Taxonomic flag for affinis (aff.) |
B | Beginning of CTD Down/Up Cast |
C | Taxonomic flag for confer (cf.) |
D | Thermometric depth |
E | End of CTD Down/Up Cast |
G | Non-taxonomic biological characteristic uncertainty |
H | Extrapolated value |
I | Taxonomic flag for single species (sp.) |
K | Improbable value - unknown quality control source |
L | Improbable value - originator's quality control |
M | Improbable value - BODC quality control |
N | Null value |
O | Improbable value - user quality control |
P | Trace/calm |
Q | Indeterminate |
R | Replacement value |
S | Estimated value |
T | Interpolated value |
U | Uncalibrated |
W | Control value |
X | Excessive difference |
SeaDataNet Quality Control Flags
The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:
Flag | Description |
---|---|
0 | no quality control |
1 | good value |
2 | probably good value |
3 | probably bad value |
4 | bad value |
5 | changed value |
6 | value below detection |
7 | value in excess |
8 | interpolated value |
9 | missing value |
A | value phenomenon uncertain |
B | nominal value |
Q | value below limit of quantification |
Appendix 1: POLRIG#704
Related series for this Data Activity are presented in the table below. Further information can be found by following the appropriate links.
If you are interested in these series, please be aware we offer a multiple file download service. Should your credentials be insufficient for automatic download, the service also offers a referral to our Enquiries Officer who may be able to negotiate access.
Series Identifier | Data Category | Start date/time | Start position | Cruise |
---|---|---|---|---|
431390 | Currents -subsurface Eulerian | 1995-08-16 16:12:30 | 56.6257 N, 9.0192 W | RRS Challenger CH121A |
439238 | Currents -subsurface Eulerian | 1995-08-16 16:12:30 | 56.6257 N, 9.0192 W | RRS Challenger CH121A |
439539 | Hydrography time series at depth | 1995-08-16 16:30:00 | 56.6257 N, 9.0192 W | RRS Challenger CH121A |
442399 | Hydrography time series at depth | 1995-08-16 16:30:00 | 56.6257 N, 9.0192 W | RRS Challenger CH121A |
Appendix 2: LOIS(SES) N300
Related series for this Fixed Station are presented in the table below. Further information can be found by following the appropriate links.
If you are interested in these series, please be aware we offer a multiple file download service. Should your credentials be insufficient for automatic download, the service also offers a referral to our Enquiries Officer who may be able to negotiate access.
Series Identifier | Data Category | Start date/time | Start position | Cruise |
---|---|---|---|---|
438991 | Currents -subsurface Eulerian | 1995-05-14 17:45:00 | 56.6265 N, 9.0192 W | RRS Charles Darwin CD93A |
390155 | CTD or STD cast | 1995-07-25 23:25:00 | 56.624 N, 9.025 W | RRS Challenger CH120 |
431390 | Currents -subsurface Eulerian | 1995-08-16 16:12:30 | 56.6257 N, 9.0192 W | RRS Challenger CH121A |
439238 | Currents -subsurface Eulerian | 1995-08-16 16:12:30 | 56.6257 N, 9.0192 W | RRS Challenger CH121A |
439539 | Hydrography time series at depth | 1995-08-16 16:30:00 | 56.6257 N, 9.0192 W | RRS Challenger CH121A |
442399 | Hydrography time series at depth | 1995-08-16 16:30:00 | 56.6257 N, 9.0192 W | RRS Challenger CH121A |
436253 | Currents -subsurface Eulerian | 1996-02-03 15:30:04 | 56.6242 N, 9.0222 W | RRS Challenger CH125A |
436265 | Currents -subsurface Eulerian | 1996-02-03 15:30:04 | 56.6242 N, 9.0222 W | RRS Challenger CH125A |
439134 | Currents -subsurface Eulerian | 1996-04-23 16:30:00 | 56.624 N, 9.0218 W | RRS Challenger CH126A |
439146 | Currents -subsurface Eulerian | 1996-04-23 16:30:00 | 56.624 N, 9.0218 W | RRS Challenger CH126A |
439078 | Currents -subsurface Eulerian | 1996-07-11 15:07:30 | 56.6267 N, 9.0183 W | RRS Challenger CH128A |
438966 | Currents -subsurface Eulerian | 1996-07-11 15:32:30 | 56.6208 N, 9.0183 W | RRS Challenger CH128A |
439158 | Currents -subsurface Eulerian | 1996-07-11 19:50:00 | 56.6267 N, 9.0183 W | RRS Challenger CH128A |