Search the data

Metadata Report for BODC Series Reference Number 875987


Metadata Summary

Data Description

Data Category CTD or STD cast
Instrument Type
NameCategories
Sea-Bird SBE 13 Dissolved Oxygen Sensor  dissolved gas sensors
Sea-Bird SBE 911plus CTD  CTD; water temperature sensor; salinity sensor
Instrument Mounting research vessel
Originating Country Germany
Originator Prof Gerhard Graf
Originating Organization University of Rostock Department of Biosciences
Processing Status banked
Online delivery of data Download available - Ocean Data View (ODV) format
Project(s) OMEX II-II
 

Data Identifiers

Originator's Identifier CTD41
BODC Series Reference 875987
 

Time Co-ordinates(UT)

Start Time (yyyy-mm-dd hh:mm) 1999-01-09 15:57
End Time (yyyy-mm-dd hh:mm) -
Nominal Cycle Interval 2.0 decibars
 

Spatial Co-ordinates

Latitude 42.14833 N ( 42° 8.9' N )
Longitude 10.49967 W ( 10° 30.0' W )
Positional Uncertainty 0.0 to 0.01 n.miles
Minimum Sensor or Sampling Depth 10.91 m
Maximum Sensor or Sampling Depth 201.31 m
Minimum Sensor or Sampling Height 2563.19 m
Maximum Sensor or Sampling Height 2753.59 m
Sea Floor Depth 2764.5 m
Sea Floor Depth Source -
Sensor or Sampling Distribution Variable common depth - All sensors are grouped effectively at the same depth, but this depth varies significantly during the series
Sensor or Sampling Depth Datum Instantaneous - Depth measured below water line or instantaneous water body surface
Sea Floor Depth Datum Instantaneous - Depth measured below water line or instantaneous water body surface
 

Parameters

BODC CODERankUnitsTitle
ATTNZR011per metreAttenuation (red light wavelength) per unit length of the water body by transmissometer
DOXYPR011Micromoles per litreConcentration of oxygen {O2 CAS 7782-44-7} per unit volume of the water body [dissolved plus reactive particulate phase] by in-situ Beckmann probe
OXYSBB011PercentSaturation of oxygen {O2 CAS 7782-44-7} in the water body [dissolved plus reactive particulate phase] by in-situ Beckmann probe and computation from concentration using Benson and Krause algorithm
POATCV011per metrePotential attenuance (unspecified wavelength) per unit length of the water body by transmissometer and computation using P-EXEC algorithm
POTMCV011Degrees CelsiusPotential temperature of the water body by computation using UNESCO 1983 algorithm
PRESPR011DecibarsPressure (spatial coordinate) exerted by the water body by profiling pressure sensor and correction to read zero at sea level
PSALST011DimensionlessPractical salinity of the water body by CTD and computation using UNESCO 1983 algorithm
SIGTPR011Kilograms per cubic metreSigma-theta of the water body by CTD and computation from salinity and potential temperature using UNESCO algorithm
TEMPST011Degrees CelsiusTemperature of the water body by CTD or STD

Definition of Rank

  • Rank 1 is a one-dimensional parameter
  • Rank 2 is a two-dimensional parameter
  • Rank 0 is a one-dimensional parameter describing the second dimension of a two-dimensional parameter (e.g. bin depths for moored ADCP data)

Problem Reports

No Problem Report Found in the Database


Data Access Policy

Public domain data

These data have no specific confidentiality restrictions for users. However, users must acknowledge data sources as it is not ethical to publish data without proper attribution. Any publication or other output resulting from usage of the data should include an acknowledgment.

The recommended acknowledgment is

"This study uses data from the data source/organisation/programme, provided by the British Oceanographic Data Centre and funded by the funding body."


Narrative Documents

Sea Bird Electronics SBE13 Dissolved Oxygen Sensor

The SBE 13 was designed as an auxiliary sensor for Sea Bird SBE 9plus, but can fitted in custom instrumentation applications. When used with the SBE 9 Underwater Unit, a flow-through plenum improves the data quality, as the pumping water over the sensor membrane reduces the errors caused by oxygen depletion during the periods of slow or intermittent flushing and also reduces exposure to biofouling.

The output voltage is proportional to membrane current (oxygen current) and to the sensor element's membrane temperature (oxygen temperature), which is used for internal temperature compensation.

Two versions of the SBE 13 are available: the SBE 13Y uses a YSI polarographic element with replaceable membranes to provide in situ measurements up to 2000 m depth and the SBE 13B uses a Beckman polarographic element to provide in situ measurements up to 10500 m depth, depending on the sensor casing. This sensor includes a replaceable sealed electrolyte membrane cartridge.

The SBE 13 instrument has been out of production since 2001 and has been superseded by the SBE 43.

Specifications

Measurement range 0 to 15 mL L-1
Accuracy 0.1 mL L-1
Time response

2 s at 25°C

5 s at 0°C

Depth range

2000 m (SBE 13Y- housing in anodized aluminum)

6800 m (SBE 13B- housing in anodized aluminum)

105000 m (SBE 13B- housing in titanium)

Further details can be found in the manufacturer's specification sheet.

Sea-Bird Electronics SBE 911 and SBE 917 series CTD profilers

The SBE 911 and SBE 917 series of conductivity-temperature-depth (CTD) units are used to collect hydrographic profiles, including temperature, conductivity and pressure as standard. Each profiler consists of an underwater unit and deck unit or SEARAM. Auxiliary sensors, such as fluorometers, dissolved oxygen sensors and transmissometers, and carousel water samplers are commonly added to the underwater unit.

Underwater unit

The CTD underwater unit (SBE 9 or SBE 9 plus) comprises a protective cage (usually with a carousel water sampler), including a main pressure housing containing power supplies, acquisition electronics, telemetry circuitry, and a suite of modular sensors. The original SBE 9 incorporated Sea-Bird's standard modular SBE 3 temperature sensor and SBE 4 conductivity sensor, and a Paroscientific Digiquartz pressure sensor. The conductivity cell was connected to a pump-fed plastic tubing circuit that could include auxiliary sensors. Each SBE 9 unit was custom built to individual specification. The SBE 9 was replaced in 1997 by an off-the-shelf version, termed the SBE 9 plus, that incorporated the SBE 3 plus (or SBE 3P) temperature sensor, SBE 4C conductivity sensor and a Paroscientific Digiquartz pressure sensor. Sensors could be connected to a pump-fed plastic tubing circuit or stand-alone.

Temperature, conductivity and pressure sensors

The conductivity, temperature, and pressure sensors supplied with Sea-Bird CTD systems have outputs in the form of variable frequencies, which are measured using high-speed parallel counters. The resulting count totals are converted to numeric representations of the original frequencies, which bear a direct relationship to temperature, conductivity or pressure. Sampling frequencies for these sensors are typically set at 24 Hz.

The temperature sensing element is a glass-coated thermistor bead, pressure-protected inside a stainless steel tube, while the conductivity sensing element is a cylindrical, flow-through, borosilicate glass cell with three internal platinum electrodes. Thermistor resistance or conductivity cell resistance, respectively, is the controlling element in an optimized Wien Bridge oscillator circuit, which produces a frequency output that can be converted to a temperature or conductivity reading. These sensors are available with depth ratings of 6800 m (aluminium housing) or 10500 m (titanium housing). The Paroscientific Digiquartz pressure sensor comprises a quartz crystal resonator that responds to pressure-induced stress, and temperature is measured for thermal compensation of the calculated pressure.

Additional sensors

Optional sensors for dissolved oxygen, pH, light transmission, fluorescence and others do not require the very high levels of resolution needed in the primary CTD channels, nor do these sensors generally offer variable frequency outputs. Accordingly, signals from the auxiliary sensors are acquired using a conventional voltage-input multiplexed A/D converter (optional). Some Sea-Bird CTDs use a strain gauge pressure sensor (Senso-Metrics) in which case their pressure output data is in the same form as that from the auxiliary sensors as described above.

Deck unit or SEARAM

Each underwater unit is connected to a power supply and data logging system: the SBE 11 (or SBE 11 plus) deck unit allows real-time interfacing between the deck and the underwater unit via a conductive wire, while the submersible SBE 17 (or SBE 17 plus) SEARAM plugs directly into the underwater unit and data are downloaded on recovery of the CTD. The combination of SBE 9 and SBE 17 or SBE 11 are termed SBE 917 or SBE 911, respectively, while the combinations of SBE 9 plus and SBE 17 plus or SBE 11 plus are termed SBE 917 plus or SBE 911 plus.

Specifications

Specifications for the SBE 9 plus underwater unit are listed below:

Parameter Range Initial accuracy Resolution at 24 Hz Response time
Temperature -5 to 35°C 0.001°C 0.0002°C 0.065 sec
Conductivity 0 to 7 S m-1 0.0003 S m-1 0.00004 S m-1 0.065 sec (pumped)
Pressure 0 to full scale (1400, 2000, 4200, 6800 or 10500 m) 0.015% of full scale 0.001% of full scale 0.015 sec

Further details can be found in the manufacturer's specification sheet.

FS Meteor 43_2 CTD Data Documentation

Instrumentation and Shipboard Procedures

The CTD profiles were taken with a SeaBird SBE 911 plus system. The instrument had enclosed conductivity and temperature sensors supplied with water by a pump. The water inlet was at the base of the bottle rosette.

When not in use, the sensors were bathed in MilliQ water. SeaBird temperature sensors are high performance, pressure protected thermistors. Other sensors on the rig were a dissolved oxygen cell (YSI SBE-13-Y polargraphic membrane) and a SeaTech red light transmissometer with a 25 cm path length.

The CTD was periodically sent for calibration to SeaBird's NWRCC facility in Washington State.

A SeaBird rosette sampler fitted with 12, 10-litre Niskin bottles was mounted above the frame. The bases of the bottles were level with the pressure sensor with their tops 0.75 m above it.

The standard operational procedure was to deploy the CTD to a depth of 10 m and leave it there until the pump had switched on and cleared the plumbing of bubbles. The instrument was then raised to the surface and the downcast commenced. However, during this cruise there was heavy swell combined with wind sea from a different direction and the ship rolled heavily when on station. Consequently, it was considered too risky to bring the instrument to the surface and the downcasts began at depths between 8 and 15 metres. There were also a small number of casts where additional downcast data were lost due to insufficient time being allowed for the system to equilibrate before lowering commenced.

The instrument was lowered continuously at approximately 1 m/s to the sea floor and then raised at the same rate in stages between bottle firing depths.

Data Acquisition

The CTD sampled at 24 Hz but this was automatically reduced to 3 Hz by the deck unit. The data were logged on a PC using the SeaBird SEASAVE program.

Post-Cruise Processing

The SeaBird DATCNV software was used to convert the binary raw data files into the calibrated ASCII data files supplied to BODC.

The salinity computation algorithm in the software is based on Fofonoff and Millard (1982). Salinity spiking on thermal gradients was minimised through software realignment of the temperature and conductivity channels.

Reformatting

The data were converted into the BODC internal format to allow the use of in-house software tools, notably the workstation graphics editor. In addition to reformatting, the transfer program converted the dissolved oxygen from µmol/kg to µM by multiplying the values by (1000 + sigma-theta)/1000. The data were loaded into the Oracle relational database management system and later migrated to the National Oceanographic Database.

Editing

Reformatted CTD data were transferred onto a high-speed graphics workstation for manual inspection using a custom in-house graphics editor. The top and bottom of the downcast were marked to eliminate noisy data logged whilst the instrument was stabilising.

The data were examined point by point and any obvious spikes were flagged 'suspect'.

Once screened on the workstation, the CTD downcasts were loaded into a database under the Oracle relational database management system. Note that the loader only included data from the downcast marked during screening.

Casts CTD23, CTD24 and CTD27 were particularly badly affected by a lack of downcast data, with virtually no temperature, salinity or oxygen in the top 100 m. Data were recovered whenever possible by patching in upcast values.

CTD31 was undertaken to collect water at a depth of 10 m, following a bottle problem on the previous cast. There were no usable downcast data. This was 'fixed' by patching in an upcast value. The water column was extremely well mixed allowing a constant value to be used.

Calibration

Pressure

The pressure calibrations were obtained by looking at the pressure values logged whilst the CTD unit was on the deck, which gave the following offset:

Corrected pressure = Raw pressure + 1.6 (n=40, S.D. = 0.15)
Temperature

The temperature data are believed to be accurate as supplied and no further calibrations have been applied.

Salinity

The salinity calibrations were derived by comparison of the values measured by the CTD with salinometer determinations on water bottle samples.

The following corrections have been applied to the data:

Corrected salinity = CTD salinity + 0.009 (n=13; S.D.=0.004)
Dissolved Oxygen

The CTD dissolved oxygen data were calibrated against water sample data obtained by the University of Liège using an automated Winkler titration technique. The bottle data were converted to units of µM at in-situ temperature and salinity prior to calibration.

The following equation was derived and has been applied to the data:

Corrected oxygen = CTD oxygen * 0.925 + 9.15 (n=161; R2=97%)
Optical Attenuance

The SeaBird processing software included a source decay correction based on an initial air voltage of 4.664 (-0.001 V blocked) and current air voltage, taken in September 1997, of 4.658 volts (0.006 V blocked). However, measurements taken during the cruise indicated that the air voltage had dropped 4.597 volts (0.001 V blocked)

The data were brought into line with the cruise air reading data by subtracting 0.053 per m from the calibrated values generated by the SeaBird software. This reduced the clear water attenuance values from between 0.4 and 0.41 to a more credible range of 0.35 to 0.36.

Data Reduction

Once all screening and calibration procedures were completed, the data set was binned to 2 db (casts deeper than 100 db) or 1 db (casts shallower than 100 db). The binning algorithm excluded any data points flagged suspect and attempted linear interpolation over gaps up to 3 bins wide. If any gaps larger than this were encountered, the data in the gaps were set null.

Downcast values corresponding to the bottle firing depths were incorporated into the database. Oxygen saturations were computed using the algorithm of Benson and Krause (1984).

References

Benson B.B. and Krause D. jnr. 1984. The concentration and isotopic fractionation of oxygen dissolved in fresh water and seawater in equilibrium with the atmosphere. Limnol. Oceanogr. 29, pp.620-632.

Fofonoff N.P., Millard R.C. 1982. Algorithms for computation of fundamental properties of seawater. UNESCO Technical Papers in Marine Science. 44.


Project Information

Ocean Margin EXchange (OMEX) II - II

Introduction

OMEX was a European multidisciplinary oceanographic research project that studied and quantified the exchange processes of carbon and associated elements between the continental shelf of western Europe and the open Atlantic Ocean. The project ran in two phases known as OMEX I (1993-1996) and OMEX II - II (1997-2000), with a bridging phase OMEX II - I (1996-1997). The project was supported by the European Union under the second and third phases of its MArine Science and Technology Programme (MAST) through contracts MAS2-CT93-0069 and MAS3-CT97-0076. It was led by Professor Roland Wollast from Université Libre de Bruxelles, Belgium and involved more than 100 scientists from 10 European countries.

Scientific Objectives

The aim of the Ocean Margin EXchange (OMEX) project was to gain a better understanding of the physical, chemical and biological processes occurring at the ocean margins in order to quantify fluxes of energy and matter (carbon, nutrients and other trace elements) across this boundary. The research culminated in the development of quantitative budgets for the areas studied using an approach based on both field measurements and modeling.

OMEX II - II (1997-2000)

The second phase of OMEX concentrated exclusively on the Iberian Margin, although RV Belgica did make some measurements on La Chapelle Bank whilst on passage to Zeebrugge. This is a narrow-shelf environment, which contrasts sharply with the broad shelf adjacent to the Goban Spur. This phase of the project was also strongly multidisciplinary in approach, covering physics, chemistry, biology and geology.

There were a total of 33 OMEX II - II research cruises, plus 23 CPR tows, most of which were instrumented. Some of these cruises took place before the official project start date of June 1997.

Data Availability

Field data collected during OMEX II - II have been published by BODC as a CD-ROM product, entitled:

  • OMEX II Project Data Set (three discs)

Further descriptions of this product and order forms may be found on the BODC web site.

The data are also held in BODC's databases and subsets may be obtained by request from BODC.


Data Activity or Cruise Information

Cruise

Cruise Name M43_2
Departure Date 1998-12-28
Arrival Date 1999-01-14
Principal Scientist(s)Gerhard Graf (University of Rostock Department of Biosciences)
Ship FS Meteor

Complete Cruise Metadata Report is available here


Fixed Station Information

Fixed Station Information

Station NameOMEX II-II Repeat Section S
CategoryOffshore route/traverse

OMEX II-II Repeat Section S

Section S was one of ten repeat sections sampled during the Ocean Margin EXchange (OMEX) II-II project between June 1997 and October 1999.

The CTD measurements collected at repeat section S, at the Iberian Margin, lie within a box bounded by co-ordinates 42° 7.7' N, 10° 30.1' W at the southwest corner and 42° 10.5' N, 08° 57.1' W at the northeast corner.

Cruises occupying section S

Cruise Start Date End Date
RRS Charles Darwin 105B 10/06/1997 22/06/1997
RV Belgica 9714C 21/06/1997 30/06/1997
RRS Charles Darwin 110A 23/12/1997 05/01/1998
RRS Charles Darwin 110B 06/01/1998 19/01/1998
RV Belgica 9815C 27/06/1998 07/07/1998
RV Professor Shtokman 0898 01/08/1998 11/08/1998
FS Meteor 43_2 28/12/1998 14/01/1999
RV Belgica 9919B 04/09/1999 11/09/1999
RV Belgica 9919C 14/09/1999 18/09/1999
RV Thalassa 1099 13/10/1999 20/10/1999

Related Fixed Station activities are detailed in Appendix 1


BODC Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
Blank Unqualified
< Below detection limit
> In excess of quoted value
A Taxonomic flag for affinis (aff.)
B Beginning of CTD Down/Up Cast
C Taxonomic flag for confer (cf.)
D Thermometric depth
E End of CTD Down/Up Cast
G Non-taxonomic biological characteristic uncertainty
H Extrapolated value
I Taxonomic flag for single species (sp.)
K Improbable value - unknown quality control source
L Improbable value - originator's quality control
M Improbable value - BODC quality control
N Null value
O Improbable value - user quality control
P Trace/calm
Q Indeterminate
R Replacement value
S Estimated value
T Interpolated value
U Uncalibrated
W Control value
X Excessive difference

SeaDataNet Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
0 no quality control
1 good value
2 probably good value
3 probably bad value
4 bad value
5 changed value
6 value below detection
7 value in excess
8 interpolated value
9 missing value
A value phenomenon uncertain
Q value below limit of quantification

Appendix 1: OMEX II-II Repeat Section S

Related series for this Fixed Station are presented in the table below. Further information can be found by following the appropriate links.

If you are interested in these series, please be aware we offer a multiple file download service. Should your credentials be insufficient for automatic download, the service also offers a referral to our Enquiries Officer who may be able to negotiate access.

Series IdentifierData CategoryStart date/timeStart positionCruise
866321CTD or STD cast1997-06-17 08:48:0042.1515 N, 8.957 WRRS Charles Darwin CD105B
866333CTD or STD cast1997-06-17 09:51:0042.14867 N, 9.0505 WRRS Charles Darwin CD105B
866112CTD or STD cast1997-06-17 10:54:0042.15017 N, 9.14033 WRRS Charles Darwin CD105B
866345CTD or STD cast1997-06-17 13:57:0042.14767 N, 9.32617 WRRS Charles Darwin CD105B
866357CTD or STD cast1997-06-17 15:17:0042.1505 N, 9.43733 WRRS Charles Darwin CD105B
866124CTD or STD cast1997-06-17 16:34:0042.15083 N, 9.4645 WRRS Charles Darwin CD105B
865907CTD or STD cast1997-06-17 18:57:0042.148 N, 9.654 WRRS Charles Darwin CD105B
866413CTD or STD cast1997-06-18 20:59:0042.15017 N, 10.00217 WRRS Charles Darwin CD105B
866425CTD or STD cast1997-06-19 00:12:0042.15067 N, 9.73567 WRRS Charles Darwin CD105B
866173CTD or STD cast1997-06-19 02:57:0042.15567 N, 9.43717 WRRS Charles Darwin CD105B
866437CTD or STD cast1997-06-19 07:56:0042.1485 N, 10.30183 WRRS Charles Darwin CD105B
864584CTD or STD cast1997-06-22 02:48:0042.14783 N, 8.96 WRV Belgica BG9714C
864166CTD or STD cast1997-06-22 04:40:0042.1465 N, 9.0495 WRV Belgica BG9714C
864596CTD or STD cast1997-06-22 06:30:0042.14967 N, 9.1425 WRV Belgica BG9714C
864603CTD or STD cast1997-06-22 08:23:0042.13933 N, 9.1595 WRV Belgica BG9714C
1851528Water sample data1997-06-22 08:28:0042.13939 N, 9.15943 WRV Belgica BG9714C
864178CTD or STD cast1997-06-22 12:10:0042.1525 N, 9.32083 WRV Belgica BG9714C
864615CTD or STD cast1997-06-22 14:04:0042.15883 N, 9.3425 WRV Belgica BG9714C
1851541Water sample data1997-06-22 14:08:0042.15881 N, 9.34258 WRV Belgica BG9714C
864627CTD or STD cast1997-06-22 16:42:0042.1545 N, 9.73217 WRV Belgica BG9714C
864639CTD or STD cast1997-06-22 20:59:0042.14817 N, 9.73633 WRV Belgica BG9714C
864191CTD or STD cast1997-06-23 04:01:0042.15067 N, 10.30433 WRV Belgica BG9714C
864640CTD or STD cast1997-06-23 05:07:0042.14917 N, 10.31 WRV Belgica BG9714C
1851553Water sample data1997-06-23 07:39:0042.1463 N, 10.32045 WRV Belgica BG9714C
864652CTD or STD cast1997-06-23 07:41:0042.14633 N, 10.3205 WRV Belgica BG9714C
866726CTD or STD cast1997-12-27 20:30:0042.15 N, 9.3125 WRRS Charles Darwin CD110A
866843CTD or STD cast1997-12-28 01:28:0042.15067 N, 8.95733 WRRS Charles Darwin CD110A
866960CTD or STD cast1997-12-28 02:26:0042.152 N, 9.04917 WRRS Charles Darwin CD110A
866972CTD or STD cast1997-12-28 03:42:0042.15217 N, 9.14017 WRRS Charles Darwin CD110A
866738CTD or STD cast1997-12-28 06:19:0042.15267 N, 9.4325 WRRS Charles Darwin CD110A
865004CTD or STD cast1998-06-28 03:40:0042.1465 N, 8.95917 WRV Belgica BG9815C
865065CTD or STD cast1998-06-28 05:17:0042.14617 N, 9.14017 WRV Belgica BG9815C
865077CTD or STD cast1998-06-28 07:40:0042.151 N, 9.14517 WRV Belgica BG9815C
865016CTD or STD cast1998-06-28 12:00:0042.15117 N, 9.32267 WRV Belgica BG9815C
865089CTD or STD cast1998-06-28 14:22:0042.1485 N, 9.53433 WRV Belgica BG9815C
865090CTD or STD cast1998-06-28 17:26:0042.15083 N, 9.58233 WRV Belgica BG9815C
865108CTD or STD cast1998-06-29 05:05:0042.14767 N, 9.54083 WRV Belgica BG9815C
865028CTD or STD cast1998-06-29 08:44:0042.14483 N, 9.73433 WRV Belgica BG9815C
888408CTD or STD cast1998-08-03 06:39:0042.14783 N, 9.1395 WProfessor Shtokman OMEX-0898
888421CTD or STD cast1998-08-03 10:00:0042.15 N, 9.1375 WProfessor Shtokman OMEX-0898
1685885Water sample data1998-08-03 11:11:0042.15 N, 9.1375 WProfessor Shtokman OMEX-0898
888433CTD or STD cast1998-08-03 12:58:0042.14733 N, 8.959 WProfessor Shtokman OMEX-0898
888445CTD or STD cast1998-08-03 15:31:0042.14733 N, 9.3185 WProfessor Shtokman OMEX-0898
888457CTD or STD cast1998-08-03 17:41:0042.1495 N, 9.46817 WProfessor Shtokman OMEX-0898
1685897Water sample data1998-08-04 09:10:0042.15 N, 9.46792 WProfessor Shtokman OMEX-0898
888469CTD or STD cast1998-08-04 10:00:0042.15 N, 9.468 WProfessor Shtokman OMEX-0898
888470CTD or STD cast1998-08-04 13:25:0042.14983 N, 9.661 WProfessor Shtokman OMEX-0898
888482CTD or STD cast1998-08-04 18:17:0042.15017 N, 9.99917 WProfessor Shtokman OMEX-0898
876051CTD or STD cast1999-01-06 03:33:0042.16817 N, 9.313 WFS Meteor M43_2
876063CTD or STD cast1999-01-06 04:12:0042.16183 N, 9.33933 WFS Meteor M43_2
876327CTD or STD cast1999-01-06 06:26:0042.1505 N, 9.465 WFS Meteor M43_2
876075CTD or STD cast1999-01-06 07:58:0042.14967 N, 9.465 WFS Meteor M43_2
876339CTD or STD cast1999-01-06 08:38:0042.14917 N, 9.46583 WFS Meteor M43_2
876087CTD or STD cast1999-01-06 21:00:0042.14983 N, 9.73983 WFS Meteor M43_2
876099CTD or STD cast1999-01-06 21:33:0042.14983 N, 9.7405 WFS Meteor M43_2
876340CTD or STD cast1999-01-06 22:11:0042.14967 N, 9.74 WFS Meteor M43_2
876106CTD or STD cast1999-01-06 23:35:0042.15 N, 9.73667 WFS Meteor M43_2
876118CTD or STD cast1999-01-07 01:28:0042.147 N, 9.72817 WFS Meteor M43_2
876352CTD or STD cast1999-01-07 04:10:0042.17383 N, 9.59533 WFS Meteor M43_2
876131CTD or STD cast1999-01-07 05:46:0042.1755 N, 9.59667 WFS Meteor M43_2
876143CTD or STD cast1999-01-07 06:17:0042.17433 N, 9.59583 WFS Meteor M43_2
876155CTD or STD cast1999-01-07 19:39:0042.14783 N, 9.51817 WFS Meteor M43_2
876167CTD or STD cast1999-01-07 21:56:0042.1505 N, 9.45867 WFS Meteor M43_2
876179CTD or STD cast1999-01-07 22:55:0042.15017 N, 9.45867 WFS Meteor M43_2
876180CTD or STD cast1999-01-07 23:59:0042.1495 N, 9.43717 WFS Meteor M43_2
876192CTD or STD cast1999-01-08 01:27:0042.15017 N, 9.39083 WFS Meteor M43_2
876211CTD or STD cast1999-01-08 02:20:0042.1505 N, 9.34433 WFS Meteor M43_2
876223CTD or STD cast1999-01-08 03:07:0042.15033 N, 9.30033 WFS Meteor M43_2
876364CTD or STD cast1999-01-08 03:50:0042.15 N, 9.256 WFS Meteor M43_2
876235CTD or STD cast1999-01-08 04:37:0042.1505 N, 9.2165 WFS Meteor M43_2
876376CTD or STD cast1999-01-08 04:55:0042.14833 N, 9.21783 WFS Meteor M43_2
876259CTD or STD cast1999-01-08 20:15:0042.15233 N, 10.5005 WFS Meteor M43_2
876388CTD or STD cast1999-01-08 20:52:0042.15167 N, 10.4995 WFS Meteor M43_2
875902CTD or STD cast1999-01-08 21:17:0042.1515 N, 10.497 WFS Meteor M43_2
875914CTD or STD cast1999-01-08 21:36:0042.15117 N, 10.49883 WFS Meteor M43_2
875926CTD or STD cast1999-01-08 22:43:0042.15033 N, 10.49917 WFS Meteor M43_2
876260CTD or STD cast1999-01-09 00:24:0042.1495 N, 10.499 WFS Meteor M43_2
875938CTD or STD cast1999-01-09 02:20:0042.14933 N, 10.49967 WFS Meteor M43_2
875951CTD or STD cast1999-01-09 03:13:0042.1495 N, 10.5005 WFS Meteor M43_2
876272CTD or STD cast1999-01-09 04:05:0042.14917 N, 10.50033 WFS Meteor M43_2
875963CTD or STD cast1999-01-09 05:11:0042.14917 N, 10.501 WFS Meteor M43_2
875975CTD or STD cast1999-01-09 06:39:0042.14967 N, 10.50167 WFS Meteor M43_2
876284CTD or STD cast1999-01-09 13:49:0042.15033 N, 10.4975 WFS Meteor M43_2
880050CTD or STD cast1999-09-08 14:25:0042.156 N, 9.72933 WRV Belgica BG9919B
880406CTD or STD cast1999-09-08 15:58:0042.145 N, 9.72217 WRV Belgica BG9919B
880295CTD or STD cast1999-09-09 06:01:0042.1485 N, 8.95867 WRV Belgica BG9919B
880049CTD or STD cast1999-09-09 06:36:0042.15017 N, 8.96283 WRV Belgica BG9919B
880191CTD or STD cast1999-09-09 07:10:0042.1485 N, 8.96333 WRV Belgica BG9919B
880399CTD or STD cast1999-09-09 13:44:0042.1535 N, 9.32317 WRV Belgica BG9919B
880062CTD or STD cast1999-09-09 17:09:0042.14883 N, 10.00217 WRV Belgica BG9919B
880209CTD or STD cast1999-09-09 17:47:0042.15583 N, 10.01167 WRV Belgica BG9919B
880596CTD or STD cast1999-09-16 06:06:0042.15533 N, 9.14217 WRV Belgica BG9919C
880603CTD or STD cast1999-09-16 06:47:0042.15333 N, 9.13833 WRV Belgica BG9919C
880615CTD or STD cast1999-09-17 06:06:0042.15 N, 9.53533 WRV Belgica BG9919C
880627CTD or STD cast1999-09-17 06:41:0042.15133 N, 9.54467 WRV Belgica BG9919C
880639CTD or STD cast1999-09-17 07:26:0042.14433 N, 9.53417 WRV Belgica BG9919C
888642CTD or STD cast1999-10-14 10:42:0042.159 N, 8.95167 WThalassa TH1099
888654CTD or STD cast1999-10-14 15:08:0042.148 N, 9.98867 WThalassa TH1099
888666CTD or STD cast1999-10-14 18:54:0042.14433 N, 9.63983 WThalassa TH1099
888678CTD or STD cast1999-10-14 21:35:0042.14633 N, 9.473 WThalassa TH1099
888691CTD or STD cast1999-10-15 07:54:0042.14433 N, 9.45967 WThalassa TH1099
888709CTD or STD cast1999-10-15 10:34:0042.15133 N, 9.31467 WThalassa TH1099
888710CTD or STD cast1999-10-15 20:00:0042.1525 N, 9.13783 WThalassa TH1099
888722CTD or STD cast1999-10-16 07:33:0042.1445 N, 9.13883 WThalassa TH1099