This morning's outage [more]

Metadata Report for BODC Series Reference Number 1076629


Metadata Summary

Data Description

Data Category Transmittance/attenuance, turbidity, or SPM conc.
Instrument Type
NameCategories
Seapoint Turbidity Meter  optical backscatter sensors
Instrument Mounting moored surface buoy
Originating Country United Kingdom
Originator Dr Naomi Greenwood
Originating Organization Centre for Environment, Fisheries and Aquaculture Science Lowestoft Laboratory
Processing Status banked
Online delivery of data Download available - Ocean Data View (ODV) format
Project(s) Oceans 2025
Oceans 2025 Theme 10
Oceans 2025 Theme 10 SO11
 

Data Identifiers

Originator's Identifier LB2_036_FT_11521
BODC Series Reference 1076629
 

Time Co-ordinates(UT)

Start Time (yyyy-mm-dd hh:mm) 2010-01-26 14:00
End Time (yyyy-mm-dd hh:mm) 2010-03-16 23:30
Nominal Cycle Interval 1800.0 seconds
 

Spatial Co-ordinates

Latitude 53.53830 N ( 53° 32.3' N )
Longitude 3.64030 W ( 3° 38.4' W )
Positional Uncertainty 0.05 to 0.1 n.miles
Minimum Sensor or Sampling Depth 1.0 m
Maximum Sensor or Sampling Depth 1.0 m
Minimum Sensor or Sampling Height 34.2 m
Maximum Sensor or Sampling Height 34.2 m
Sea Floor Depth 35.2 m
Sea Floor Depth Source SCILOG
Sensor or Sampling Distribution Fixed common depth - All sensors are grouped effectively at the same depth which is effectively fixed for the duration of the series
Sensor or Sampling Depth Datum Instantaneous - Depth measured below water line or instantaneous water body surface
Sea Floor Depth Datum Approximate - Depth is only approximate
 

Parameters

BODC CODERankUnitsTitle
AADYAA011DaysDate (time from 00:00 01/01/1760 to 00:00 UT on day)
AAFDZZ011DaysTime (time between 00:00 UT and timestamp)
ACYCAA011DimensionlessSequence number
TURBPR011Nephelometric Turbidity UnitsTurbidity of water in the water body by in-situ optical backscatter measurement and laboratory calibration against formazin

Definition of Rank

  • Rank 1 is a one-dimensional parameter
  • Rank 2 is a two-dimensional parameter
  • Rank 0 is a one-dimensional parameter describing the second dimension of a two-dimensional parameter (e.g. bin depths for moored ADCP data)

Problem Reports

No Problem Report Found in the Database


Data Access Policy

Open Data supplied by Natural Environment Research Council (NERC)

You must always use the following attribution statement to acknowledge the source of the information: "Contains data supplied by Natural Environment Research Council."


Narrative Documents

Seapoint Turbidity Meter

The Seapoint Turbidity Meter detects light scattered by particles suspended in water, generating an output voltage proportional to turbidity or suspended solids. Range is selected by two digital lines which can be hard wired or microprocessor controlled, thereby choosing the appropriate range and resolution for measurement of extremely clean to very turbid waters. The offset voltage is within 1 mV of zero and requires no adjustment across gains. The optical design confines the sensing volume to within 5 cm of the sensor allowing near-bottom measurements and minimizing errant reflections in restricted spaces.

Sensor specifications, current at August 2006, are given in the table below.

Sensor Specifications

Power requirements 7 - 20 VDC, 3.5 mA avg., 6 mA pk.
Output 0 - 5.0 VDC
Output Time Constant 0.1 sec.
RMS Noise> < 1 mV
Power-up transient period < 1 sec.
Light Source Wavelength 880 nm
Sensing Distance (from windows) < 5 cm (approx.)
Linearity < 2% deviation 0 - 750 FTU

  Gain Sensitivity (mV FTU-1) Range (FTU)
Sensitivity/Range 100x
20x
5x
1x
200
40
10
2
25
125
500
**

** output is non-linear above 750 FTU.

Further details can be found in the manufacturer's specification sheet.

Cefas SmartBuoy data processing

This document outlines the procedures in place at Cefas in August 2005 for processing and quality assuring SmartBuoy data.

Raw data files are processed and the data move through 4 levels, starting with raw data at level 0 through to level 3, where data are fully quality-assured and expressed in appropriate units. The application of the procedures at each level result in data deemed fit to progress to the next level.

Cefas Quality Assurance (QA) Protocols

At Level 0, raw binary data files from the loggers are transferred to the network.

Automated checks - Level 1

Level 1 involves applying automated quality assurance procedures to the data. These include the following steps:

The data are now at QA status = 1.

Manual checks - Level 2

Level 1 burst mean data are now ready for manual QA procedures in order to progress to Level 2. Deployment notes are consulted for any comments on sensor performance or malfunction and post-deployment photographs of sensors, if available, are examined.

Cefas use a data visualisation tool to examine the SmartBuoy data.

Calibrations - Level 3

The combined information from Level 2 is used to determine the periods during which the data series are considered suspect. The data have now reached QA status = 2 and can progress to Level 3, where they will be fully calibrated with field-derived sample data.

The data have now reached QA status = 3 as time stamped, field calibrated burst mean data with parameter codes and units stored on SmartBuoy database with associated uncertainty or 95% confidence limits as appropriate. All SmartBuoy data banked at BODC have passed full Cefas QA procedures. Data that fail the Cefas QA checks are not submitted for banking.

SmartBuoy data processing by BODC

The following outlines the procedures that take place at BODC for banking Cefas SmartBuoy data.

BODC receives SmartBuoy data from Cefas after all quality checks have been passed and all possible calibrations applied. The data files are submitted as separate MS Excel spreadsheets for each parameter, i.e. there are separate files for temperature and salinity from the same instrument. An exact copy of the data is archived for safekeeping upon arrival.

Once the submitted data files are safely archived, the data undergo standard reformatting and banking procedures:


Project Information

Oceans 2025 - The NERC Marine Centres' Strategic Research Programme 2007-2012

Who funds the programme?

The Natural Environment Research Council (NERC) funds the Oceans 2025 programme, which was originally planned in the context of NERC's 2002-2007 strategy and later realigned to NERC's subsequent strategy (Next Generation Science for Planet Earth; NERC 2007).

Who is involved in the programme?

The Oceans 2025 programme was designed by and is to be implemented through seven leading UK marine centres. The marine centres work together in coordination and are also supported by cooperation and input from government bodies, universities and other partners. The seven marine centres are:

Oceans2025 provides funding to three national marine facilities, which provide services to the wider UK marine community, in addition to the Oceans 2025 community. These facilities are:

The NERC-run Strategic Ocean Funding Initiative (SOFI) provides additional support to the programme by funding additional research projects and studentships that closely complement the Oceans 2025 programme, primarily through universities.

What is the programme about?

Oceans 2025 sets out to address some key challenges that face the UK as a result of a changing marine environment. The research funded through the programme sets out to increase understanding of the size, nature and impacts of these changes, with the aim to:

In order to address these aims there are nine science themes supported by the Oceans 2025 programme:

In the original programme proposal there was a theme on health and human impacts (Theme 7). The elements of this Theme have subsequently been included in Themes 3 and 9.

When is the programme active?

The programme started in April 2007 with funding for 5 years.

Brief summary of the programme fieldwork/data

Programme fieldwork and data collection are to be achieved through:

The data is to be fed into models for validation and future projections. Greater detail can be found in the Theme documents.


Oceans 2025 Theme 10

Oceans 2025 is a strategic marine science programme, bringing marine researchers together to increase people's knowledge of the marine environment so that they are better able to protect it for future generations.

Theme 10: Integration of Sustained Observations in the Marine Environment spans all marine domains from the sea-shore to the global ocean, providing data and knowledge on a wide range of ecosystem properties and processes (from ocean circulation to biodiversity) that are critical to understanding Earth system behaviour and identifying change. They have been developed not merely to provide long-term data sets, but to capture extreme or episodic events, and play a key role in the initialisation and validation of models. Many of these SOs will be integrated into the newly developing UK Marine Monitoring Strategy - evolving from the Defra reports Safeguarding our Seas (2002) and Charting Progress (2005), thus contributing to the underpinning knowledge for national marine stewardship. They will also contribute to the UK GOOS Strategic Plan (IACMST, 2006) and the Global Marine Assessment.

Weblink: http://www.oceans2025.org/


Oceans 2025 Theme 10, Sustained Observation Activity 11: Liverpool Bay and Irish Sea Coastal Observatory

Sustained, systematic observations of the ocean and continental shelf seas at appropriate time and space scales allied to numerical models are key to understanding and prediction. In shelf seas these observations address issues as fundamental as 'what is the capacity of shelf seas to absorb change?' encompassing the impacts of climate change, biological productivity and diversity, sustainable management, pollution and public health, safety at sea and extreme events. Advancing understanding of coastal processes to use and manage these resources better is challenging; important controlling processes occur over a broad range of spatial and temporal scales which cannot be simultaneously studied solely with satellite or ship-based platforms.

Considerable effort has been spent by the Proudman Oceangraphic Laboratory (POL) in the years 2001 - 2006 in setting up an integrated observational and now-cast modelling system in Liverpool Bay (see Figure), with the recent POL review stating the observatory was seen as a leader in its field and a unique 'selling' point of the laboratory. Cost benefit analysis (IACMST, 2004) shows that benefits really start to accrue after 10 years. In 2007 - 2012 exploitation of (i) the time series being acquired, (ii) the model-data synthesis and (iii) the increasingly available quantities of real-time data (e.g. river flows) can be carried out through Sustained Observation Activity (SO) 11, to provide an integrated assessment and short term forecasts of the coastal ocean state.

BODC image

Overall Aims and Purpose of SO 11

Measurement and Modelling Activities

More detailed information on this Work Package is available at pages 32 - 35 of the official Oceans 2025 Theme 10 document: Oceans 2025 Theme 10

Weblink: http://www.oceans2025.org/

References:

IACMST., 2004. The Economics of Sustained Marine Measurements. IACMST Information Document, N0.11, Southampton: IACMST, 96 pp


Data Activity or Cruise Information

Data Activity

Start Date (yyyy-mm-dd) 2010-01-26
End Date (yyyy-mm-dd) 2010-03-17
Organization Undertaking ActivityProudman Oceanographic Laboratory (now National Oceanography Centre, Liverpool)
Country of OrganizationUnited Kingdom
Originator's Data Activity IdentifierLB2_036 / POLRIG1087
Platform Categorymoored surface buoy

COBs Site B SmartBuoy deployment LB2_036/1087

Deployment and recovery

This mooring was deployed in a collaboration between Cefas and the POL Liverpool Bay Coastal Observatory. The rig was deployed in January 2010 during RV Prince Madog cruise PD02/10. The rig was recovered in March 2010 during RV Prince Madog cruisePD05/10.

Rig Description

The SmartBuoy carried a suite of Cefas instruments mounted just below the surface, as well as instrumentation belonging to POL upto 15 m deep. Further information is given in the table below.

The single point mooring was composed mainly of 0.5 inch long link chain, marked by a 1.8 m diameter toroid and anchored by a half tonne clump of scrap chain.

The following instruments were connected to a Eco System Monitor;

Instrument Serial
Number
Meter
depth (m)
Record
Length (days)
Owner
MiniTracka Chlorophyll Fluorometer 175063 1 50 Cefas
Aanderaa Conductivity Sensor - Type 3919B IW 947 1 51 Cefas
Druck 5 bar Pressure Transducer 2418431 1 51 Cefas
Seapoint Turbidity Meter 11521 1 50 Cefas

The following instruments were stand alone sensors;

Instrument Serial
Number
Meter
depth (m)
Record
Length (days)
Owner
Sea-Bird 37 MicroCAT 5791 5 51 NOC
Sea-Bird 37 MicroCAT 5793 10 51 NOC
Minilogger 2841 7.5 51 NOC
Minilogger 2849 15 51 NOC

Related Data Activity activities are detailed in Appendix 1

Cruise

Cruise Name PD02/10
Departure Date 2010-01-26
Arrival Date 2010-01-27
Principal Scientist(s)Matthew R Palmer (Proudman Oceanographic Laboratory)
Ship RV Prince Madog

Complete Cruise Metadata Report is available here


Fixed Station Information

Fixed Station Information

Station NameCoastal Observatory Site 20
CategoryOffshore area
Latitude53° 32.13' N
Longitude3° 38.39' W
Water depth below MSL32.5 m

Liverpool Bay Coastal Observatory Site 20

This station is one of 34 stations regularly visited by the Proudman Oceanographic Laboratory (POL) as part of the Liverpool Bay Coastal Observatory. During each site visit CTD profiles are collected and since March 2010 (when this became the secondary mooring site for the Coastal Observatory (also known as Site B)) moorings are deployed. The station lies within a box of mean water depth 32.5 m with the following co-ordinates:

Box Corner Latitude Longitude
North-west corner 53.54052° -3.65075°
South-east corner 53.53041° -3.62923°

The position of this station relative to the other POL Coastal Observatory sites can be seen from the figure below.

BODC image

CTD Sampling History

Year Number of Visits Total Casts per year
2011 5 11
2010 8 22
2009 6 6
2008 7 7
2007 7 7
2006 7 8
2005 7 7
2004 8 8
2003 9 9
2002 2 2

The CTD instrument package for these cruises was a Sea-Bird 911plus, with beam transmissometer, fluorometer, LICOR PAR sensor, LISST-25, and oxygen sensor.

Related Fixed Station activities are detailed in Appendix 2


BODC Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
Blank Unqualified
< Below detection limit
> In excess of quoted value
A Taxonomic flag for affinis (aff.)
B Beginning of CTD Down/Up Cast
C Taxonomic flag for confer (cf.)
D Thermometric depth
E End of CTD Down/Up Cast
G Non-taxonomic biological characteristic uncertainty
H Extrapolated value
I Taxonomic flag for single species (sp.)
K Improbable value - unknown quality control source
L Improbable value - originator's quality control
M Improbable value - BODC quality control
N Null value
O Improbable value - user quality control
P Trace/calm
Q Indeterminate
R Replacement value
S Estimated value
T Interpolated value
U Uncalibrated
W Control value
X Excessive difference

SeaDataNet Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
0 no quality control
1 good value
2 probably good value
3 probably bad value
4 bad value
5 changed value
6 value below detection
7 value in excess
8 interpolated value
9 missing value
A value phenomenon uncertain
Q value below limit of quantification

Appendix 1: LB2_036 / POLRIG1087

Related series for this Data Activity are presented in the table below. Further information can be found by following the appropriate links.

If you are interested in these series, please be aware we offer a multiple file download service. Should your credentials be insufficient for automatic download, the service also offers a referral to our Enquiries Officer who may be able to negotiate access.

Series IdentifierData CategoryStart date/timeStart positionCruise
1641384Hydrography time series at depth2010-01-26 13:10:0053.53833 N, 3.64033 WRV Prince Madog PD02/10
1641396Hydrography time series at depth2010-01-26 13:10:0053.53833 N, 3.64033 WRV Prince Madog PD02/10
1641323Hydrography time series at depth2010-01-26 13:10:0153.53833 N, 3.64033 WRV Prince Madog PD02/10
1641335Hydrography time series at depth2010-01-26 13:10:0253.53833 N, 3.64033 WRV Prince Madog PD02/10
1075687Fluorescence or pigments2010-01-26 14:00:0053.5383 N, 3.6403 WRV Prince Madog PD02/10
1075558Hydrography time series at depth2010-01-26 14:00:0053.5383 N, 3.6403 WRV Prince Madog PD02/10

Appendix 2: Coastal Observatory Site 20

Related series for this Fixed Station are presented in the table below. Further information can be found by following the appropriate links.

If you are interested in these series, please be aware we offer a multiple file download service. Should your credentials be insufficient for automatic download, the service also offers a referral to our Enquiries Officer who may be able to negotiate access.

Series IdentifierData CategoryStart date/timeStart positionCruise
1013118CTD or STD cast2006-11-02 06:18:0053.53267 N, 3.64367 WRV Prince Madog PD35/06
979271CTD or STD cast2007-02-15 17:26:0053.53317 N, 3.63867 WRV Prince Madog PD02/07
937772CTD or STD cast2007-04-20 02:36:0053.53767 N, 3.64383 WRV Prince Madog PD06/07
942239CTD or STD cast2007-05-17 06:12:0053.53283 N, 3.63633 WRV Prince Madog PD09/07
942995CTD or STD cast2007-06-21 06:23:0053.5365 N, 3.64517 WRV Prince Madog PD13/07
943396CTD or STD cast2007-07-27 06:37:0053.53367 N, 3.62917 WRV Prince Madog PD16/07
943808CTD or STD cast2007-08-30 05:46:0053.53267 N, 3.6425 WRV Prince Madog PD20/07
945759CTD or STD cast2007-10-04 06:47:0053.5315 N, 3.63883 WRV Prince Madog PD23/07
946818CTD or STD cast2008-01-11 02:24:0053.53517 N, 3.6435 WRV Prince Madog PD01/08
947084CTD or STD cast2008-03-14 05:52:0053.533 N, 3.64533 WRV Prince Madog PD07/08
947397CTD or STD cast2008-04-17 06:12:0053.53583 N, 3.637 WRV Prince Madog PD09/08
948235CTD or STD cast2008-05-15 13:00:0053.53367 N, 3.64517 WRV Prince Madog PD14/08
948585CTD or STD cast2008-06-25 20:03:0053.53367 N, 3.641 WRV Prince Madog PD19/08
949472CTD or STD cast2008-07-31 07:10:0053.53367 N, 3.6365 WRV Prince Madog PD23/08
950079CTD or STD cast2008-12-11 06:25:0053.53117 N, 3.6365 WRV Prince Madog PD37/08
950485CTD or STD cast2009-02-06 09:50:0053.53367 N, 3.64533 WRV Prince Madog PD02/09B
951464CTD or STD cast2009-04-02 03:57:0053.53183 N, 3.64217 WRV Prince Madog PD12/09
953803CTD or STD cast2009-05-13 11:24:0053.53433 N, 3.64083 WRV Prince Madog PD18/09
1023149CTD or STD cast2009-06-17 21:35:0053.53167 N, 3.64483 WRV Prince Madog PD24/09
1023487CTD or STD cast2009-08-03 14:35:0053.53283 N, 3.6415 WRV Prince Madog PD33/09
1024349CTD or STD cast2009-09-16 04:31:0053.53383 N, 3.643 WRV Prince Madog PD38/09
1641347Hydrography time series at depth2010-01-26 11:40:0353.53783 N, 3.64033 WRV Prince Madog PD02/10
1624135Currents -subsurface Eulerian2010-01-26 11:45:0053.53783 N, 3.64033 WRV Prince Madog PD02/10
1030380CTD or STD cast2010-01-26 13:08:0053.539 N, 3.64017 WRV Prince Madog PD02/10
1641384Hydrography time series at depth2010-01-26 13:10:0053.53833 N, 3.64033 WRV Prince Madog PD02/10
1641396Hydrography time series at depth2010-01-26 13:10:0053.53833 N, 3.64033 WRV Prince Madog PD02/10
1641323Hydrography time series at depth2010-01-26 13:10:0153.53833 N, 3.64033 WRV Prince Madog PD02/10
1641335Hydrography time series at depth2010-01-26 13:10:0253.53833 N, 3.64033 WRV Prince Madog PD02/10
1075687Fluorescence or pigments2010-01-26 14:00:0053.5383 N, 3.6403 WRV Prince Madog PD02/10
1075558Hydrography time series at depth2010-01-26 14:00:0053.5383 N, 3.6403 WRV Prince Madog PD02/10
1030564CTD or STD cast2010-01-27 06:05:0053.54083 N, 3.63667 WRV Prince Madog PD02/10
1038333CTD or STD cast2010-03-17 15:37:0053.5395 N, 3.64383 WRV Prince Madog PD05/10
1641440Hydrography time series at depth2010-03-17 16:40:0353.53783 N, 3.64217 WRV Prince Madog PD05/10
1624080Currents -subsurface Eulerian2010-03-17 16:45:0053.53783 N, 3.64217 WRV Prince Madog PD05/10
1641488Hydrography time series at depth2010-03-17 16:50:0053.539 N, 3.64017 WRV Prince Madog PD05/10
1641507Hydrography time series at depth2010-03-17 16:50:0053.539 N, 3.64017 WRV Prince Madog PD05/10
1641415Hydrography time series at depth2010-03-17 16:50:0153.539 N, 3.64017 WRV Prince Madog PD05/10
1641439Hydrography time series at depth2010-03-17 16:50:0153.539 N, 3.64017 WRV Prince Madog PD05/10
1075699Fluorescence or pigments2010-03-17 17:00:0053.539 N, 3.6402 WRV Prince Madog PD05/10
1075571Hydrography time series at depth2010-03-17 17:00:0053.539 N, 3.6402 WRV Prince Madog PD05/10
1076120Transmittance/attenuance, turbidity, or SPM conc.2010-03-17 17:00:0053.539 N, 3.6402 WRV Prince Madog PD05/10
1038345CTD or STD cast2010-03-17 17:03:0053.54 N, 3.6435 WRV Prince Madog PD05/10
1641556Hydrography time series at depth2010-04-28 17:40:0353.5395 N, 3.64017 WRV Prince Madog PD10/10
1624031Currents -subsurface Eulerian2010-04-28 17:45:0053.5395 N, 3.64017 WRV Prince Madog PD10/10
1075706Fluorescence or pigments2010-04-28 18:00:0053.5408 N, 3.6392 WRV Prince Madog PD10/10
1075583Hydrography time series at depth2010-04-28 18:00:0053.5408 N, 3.6392 WRV Prince Madog PD10/10
1641600Hydrography time series at depth2010-04-28 18:00:0053.54083 N, 3.63917 WRV Prince Madog PD10/10
1641612Hydrography time series at depth2010-04-28 18:00:0053.54083 N, 3.63917 WRV Prince Madog PD10/10
1076630Transmittance/attenuance, turbidity, or SPM conc.2010-04-28 18:00:0053.5408 N, 3.6392 WRV Prince Madog PD10/10
1641519Hydrography time series at depth2010-04-28 18:00:0153.54083 N, 3.63917 WRV Prince Madog PD10/10
1641532Hydrography time series at depth2010-04-28 18:00:0153.54083 N, 3.63917 WRV Prince Madog PD10/10
1090696CTD or STD cast2010-06-10 16:48:0053.53833 N, 3.638 WRV Prince Madog PD17/10
1641685Hydrography time series at depth2010-06-10 18:00:0353.53917 N, 3.641 WRV Prince Madog PD17/10
1624079Currents -subsurface Eulerian2010-06-10 18:05:0053.53917 N, 3.641 WRV Prince Madog PD17/10
1075718Fluorescence or pigments2010-06-10 18:30:0053.5405 N, 3.6386 WRV Prince Madog PD17/10
1075595Hydrography time series at depth2010-06-10 18:30:0053.5405 N, 3.6386 WRV Prince Madog PD17/10
1090703CTD or STD cast2010-06-10 19:05:0053.54333 N, 3.63433 WRV Prince Madog PD17/10
1090893CTD or STD cast2010-07-07 21:40:0053.543 N, 3.63967 WRV Prince Madog PD21/10
1090997CTD or STD cast2010-07-08 06:04:0053.53617 N, 3.635 WRV Prince Madog PD21/10
1641790Hydrography time series at depth2010-07-08 07:40:0353.5395 N, 3.64083 WRV Prince Madog PD21/10
1624043Currents -subsurface Eulerian2010-07-08 07:45:0053.5395 N, 3.64083 WRV Prince Madog PD21/10
1075731Fluorescence or pigments2010-07-08 08:00:0053.5378 N, 3.6367 WRV Prince Madog PD21/10
1075602Hydrography time series at depth2010-07-08 08:00:0053.5378 N, 3.6367 WRV Prince Madog PD21/10
1641833Hydrography time series at depth2010-07-08 08:10:0053.53783 N, 3.63667 WRV Prince Madog PD21/10
1641845Hydrography time series at depth2010-07-08 08:10:0053.53783 N, 3.63667 WRV Prince Madog PD21/10
1641741Hydrography time series at depth2010-07-08 08:10:0153.53783 N, 3.63667 WRV Prince Madog PD21/10
1641777Hydrography time series at depth2010-07-08 08:10:0153.53783 N, 3.63667 WRV Prince Madog PD21/10
1091000CTD or STD cast2010-07-08 08:25:0053.54233 N, 3.63367 WRV Prince Madog PD21/10
1112294CTD or STD cast2010-08-12 06:06:0053.53467 N, 3.64383 WRV Prince Madog PD29/10
1112405CTD or STD cast2010-08-12 18:07:0053.539 N, 3.643 WRV Prince Madog PD29/10
1641870Hydrography time series at depth2010-08-12 19:10:0353.5395 N, 3.64117 WRV Prince Madog PD29/10
1112417CTD or STD cast2010-08-12 19:11:0053.53667 N, 3.6385 WRV Prince Madog PD29/10
1623967Currents -subsurface Eulerian2010-08-12 19:15:0053.5395 N, 3.64117 WRV Prince Madog PD29/10
1114160CTD or STD cast2010-09-29 04:05:0053.5315 N, 3.64317 WRV Prince Madog PD36/10
1114196CTD or STD cast2010-09-29 07:03:0053.541 N, 3.64433 WRV Prince Madog PD36/10
1641962Hydrography time series at depth2010-09-29 07:50:0353.54017 N, 3.64167 WRV Prince Madog PD36/10
1623851Currents -subsurface Eulerian2010-09-29 07:55:0053.54017 N, 3.64167 WRV Prince Madog PD36/10
1075743Fluorescence or pigments2010-09-29 08:30:0053.5405 N, 3.6363 WRV Prince Madog PD36/10
1075614Hydrography time series at depth2010-09-29 08:30:0053.5405 N, 3.6363 WRV Prince Madog PD36/10
1641998Hydrography time series at depth2010-09-29 08:30:0053.5405 N, 3.63633 WRV Prince Madog PD36/10
1642001Hydrography time series at depth2010-09-29 08:30:0053.5405 N, 3.63633 WRV Prince Madog PD36/10
1076132Transmittance/attenuance, turbidity, or SPM conc.2010-09-29 08:30:0053.5405 N, 3.6363 WRV Prince Madog PD36/10
1641913Hydrography time series at depth2010-09-29 08:30:0153.5405 N, 3.63633 WRV Prince Madog PD36/10
1641937Hydrography time series at depth2010-09-29 08:30:0153.5405 N, 3.63633 WRV Prince Madog PD36/10
1114203CTD or STD cast2010-09-29 08:51:0053.54033 N, 3.63717 WRV Prince Madog PD36/10
1642062Hydrography time series at depth2010-12-07 15:20:0353.5405 N, 3.64283 WRV Prince Madog PD49/10
1623666Currents -subsurface Eulerian2010-12-07 15:25:0053.5405 N, 3.64283 WRV Prince Madog PD49/10
1642098Hydrography time series at depth2010-12-07 16:10:0053.537 N, 3.638 WRV Prince Madog PD49/10
1642105Hydrography time series at depth2010-12-07 16:10:0053.537 N, 3.638 WRV Prince Madog PD49/10
1642117Hydrography time series at depth2010-12-07 16:10:0053.537 N, 3.638 WRV Prince Madog PD49/10
1642013Hydrography time series at depth2010-12-07 16:10:0153.537 N, 3.638 WRV Prince Madog PD49/10
1642025Hydrography time series at depth2010-12-07 16:10:0153.537 N, 3.638 WRV Prince Madog PD49/10
1075755Fluorescence or pigments2010-12-07 16:30:0053.5405 N, 3.6428 WRV Prince Madog PD49/10
1075626Hydrography time series at depth2010-12-07 16:30:0053.5405 N, 3.6428 WRV Prince Madog PD49/10
1140953CTD or STD cast2010-12-07 16:46:0053.53667 N, 3.646 WRV Prince Madog PD49/10
1141016CTD or STD cast2010-12-07 21:10:0053.534 N, 3.63433 WRV Prince Madog PD49/10
1149067CTD or STD cast2011-01-13 08:03:0053.54033 N, 3.64283 WRV Prince Madog PD01/11
1149079CTD or STD cast2011-01-13 09:10:0053.543 N, 3.6415 WRV Prince Madog PD01/11
1642178Hydrography time series at depth2011-01-13 09:10:0353.54033 N, 3.64383 WRV Prince Madog PD01/11
1623771Currents -subsurface Eulerian2011-01-13 09:14:5953.54033 N, 3.64383 WRV Prince Madog PD01/11
1642209Hydrography time series at depth2011-01-13 15:10:0053.54017 N, 3.63983 WRV Prince Madog PD01/11
1642210Hydrography time series at depth2011-01-13 15:10:0053.54017 N, 3.63983 WRV Prince Madog PD01/11
1642222Hydrography time series at depth2011-01-13 15:10:0053.54017 N, 3.63983 WRV Prince Madog PD01/11
1642130Hydrography time series at depth2011-01-13 15:10:0153.54017 N, 3.63983 WRV Prince Madog PD01/11
1642142Hydrography time series at depth2011-01-13 15:10:0153.54017 N, 3.63983 WRV Prince Madog PD01/11
1149159CTD or STD cast2011-01-13 15:32:0053.53833 N, 3.637 WRV Prince Madog PD01/11
1149946CTD or STD cast2011-03-17 08:59:0053.53833 N, 3.63967 WRV Prince Madog PD07/11
1150112CTD or STD cast2011-03-18 10:34:0053.542 N, 3.64017 WRV Prince Madog PD07/11
1642295Hydrography time series at depth2011-03-18 11:20:0353.53983 N, 3.64233 WRV Prince Madog PD07/11
1624111Currents -subsurface Eulerian2011-03-18 11:25:0053.53983 N, 3.64233 WRV Prince Madog PD07/11
1642326Hydrography time series at depth2011-03-18 11:40:0053.5385 N, 3.64017 WRV Prince Madog PD07/11
1642338Hydrography time series at depth2011-03-18 11:40:0053.5385 N, 3.64017 WRV Prince Madog PD07/11
1642351Hydrography time series at depth2011-03-18 11:40:0053.5385 N, 3.64017 WRV Prince Madog PD07/11
1642246Hydrography time series at depth2011-03-18 11:40:0153.5385 N, 3.64017 WRV Prince Madog PD07/11
1642271Hydrography time series at depth2011-03-18 11:40:0153.5385 N, 3.64017 WRV Prince Madog PD07/11
1150124CTD or STD cast2011-03-18 11:55:0053.54067 N, 3.64167 WRV Prince Madog PD07/11
1117735CTD or STD cast2011-04-20 11:12:0053.5395 N, 3.63167 WRV Prince Madog PD11/11
1117747CTD or STD cast2011-04-20 12:05:0053.53883 N, 3.63783 WRV Prince Madog PD11/11
1118683CTD or STD cast2011-06-07 00:35:0053.53917 N, 3.63383 WRV Prince Madog PD43/11