Search the data

Metadata Report for BODC Series Reference Number 1625913


Metadata Summary

Data Description

Data Category CTD or STD cast
Instrument Type
NameCategories
Sea-Bird SBE 911 CTD  CTD; water temperature sensor; salinity sensor
Sea-Bird SBE 43 Dissolved Oxygen Sensor  dissolved gas sensors
Chelsea Technologies Group 2-pi PAR irradiance sensor  radiometers
WET Labs {Sea-Bird WETLabs} ECO BB(RT)D backscattering sensor  optical backscatter sensors
Paroscientific 410K Pressure Transducer  water temperature sensor; water pressure sensors
Sea-Bird SBE 3plus (SBE 3P) temperature sensor  water temperature sensor
Sea-Bird SBE 4C conductivity sensor  salinity sensor
Chelsea Technologies Group Aquatracka III fluorometer  fluorometers
Chelsea Technologies Group Alphatracka II transmissometer  transmissometers
Instrument Mounting lowered unmanned submersible
Originating Country United Kingdom
Originator Dr Jo Hopkins
Originating Organization National Oceanography Centre, Liverpool
Processing Status banked
Online delivery of data Download available - Ocean Data View (ODV) format
Project(s) Shelf Sea Biogeochemistry (SSB)
SSB CaNDyFloSS
 

Data Identifiers

Originator's Identifier DY033_CAST083_STNNBR_269
BODC Series Reference 1625913
 

Time Co-ordinates(UT)

Start Time (yyyy-mm-dd hh:mm) 2015-07-31 14:09
End Time (yyyy-mm-dd hh:mm) -
Nominal Cycle Interval 1.0 decibars
 

Spatial Co-ordinates

Latitude 49.39542 N ( 49° 23.7' N )
Longitude 8.59820 W ( 8° 35.9' W )
Positional Uncertainty 0.0 to 0.01 n.miles
Minimum Sensor or Sampling Depth 3.97 m
Maximum Sensor or Sampling Depth 141.73 m
Minimum Sensor or Sampling Height 5.27 m
Maximum Sensor or Sampling Height 143.03 m
Sea Floor Depth 147.0 m
Sea Floor Depth Source DATAHEAD
Sensor or Sampling Distribution Variable common depth - All sensors are grouped effectively at the same depth, but this depth varies significantly during the series
Sensor or Sampling Depth Datum Instantaneous - Depth measured below water line or instantaneous water body surface
Sea Floor Depth Datum Instantaneous - Depth measured below water line or instantaneous water body surface
 

Parameters

BODC CODERankUnitsTitle
ACYCAA011DimensionlessSequence number
ATTNMR011per metreAttenuation (red light wavelength) per unit length of the water body by 20 or 25cm path length transmissometer
BB117R021per metre per nanometre per steradianAttenuation due to backscatter (650 nm wavelength at 117 degree incidence) by the water body [particulate >unknown phase] by in-situ optical backscatter measurement
CNDCST011Siemens per metreElectrical conductivity of the water body by CTD
CPHLPS011Milligrams per cubic metreConcentration of chlorophyll-a {chl-a CAS 479-61-8} per unit volume of the water body [particulate >unknown phase] by in-situ chlorophyll fluorometer and calibration against sample data
DOXYZZ011Micromoles per litreConcentration of oxygen {O2 CAS 7782-44-7} per unit volume of the water body [dissolved plus reactive particulate phase] by in-situ sensor
DWIRPP011Watts per square metreDownwelling 2-pi scalar irradiance as energy of electromagnetic radiation (PAR wavelengths) in the water body by 2-pi scalar radiometer
OXYSZZ011PercentSaturation of oxygen {O2 CAS 7782-44-7} in the water body [dissolved plus reactive particulate phase]
POTMCV011Degrees CelsiusPotential temperature of the water body by computation using UNESCO 1983 algorithm
PRESPR011DecibarsPressure (spatial coordinate) exerted by the water body by profiling pressure sensor and correction to read zero at sea level
PSALST011DimensionlessPractical salinity of the water body by CTD and computation using UNESCO 1983 algorithm
SIGTPR011Kilograms per cubic metreSigma-theta of the water body by CTD and computation from salinity and potential temperature using UNESCO algorithm
TEMPST011Degrees CelsiusTemperature of the water body by CTD or STD

Definition of Rank

  • Rank 1 is a one-dimensional parameter
  • Rank 2 is a two-dimensional parameter
  • Rank 0 is a one-dimensional parameter describing the second dimension of a two-dimensional parameter (e.g. bin depths for moored ADCP data)

Problem Reports

No Problem Report Found in the Database

Data quality report for DY033 PAR CTD data

The data recorded in the first few surface bins in the PAR channel have been flagged in several series, due to unrealistic values which exceeded the maximum permissible value for the parameter (500 W m-2). Although flags have only been applied in series where the maximum PAR value is above this level, the presence of several CTD casts with surface PAR values in excess of 500 W m-2 could indicate a wider problem with the data from this channel. Therefore BODC recommend that the data from this channel are used with caution.


Data Access Policy

Open Data

These data have no specific confidentiality restrictions for users. However, users must acknowledge data sources as it is not ethical to publish data without proper attribution. Any publication or other output resulting from usage of the data should include an acknowledgment.

If the Information Provider does not provide a specific attribution statement, or if you are using Information from several Information Providers and multiple attributions are not practical in your product or application, you may consider using the following:

"Contains public sector information licensed under the Open Government Licence v1.0."


Narrative Documents

Sea-Bird Dissolved Oxygen Sensor SBE 43 and SBE 43F

The SBE 43 is a dissolved oxygen sensor designed for marine applications. It incorporates a high-performance Clark polarographic membrane with a pump that continuously plumbs water through it, preventing algal growth and the development of anoxic conditions when the sensor is taking measurements.

Two configurations are available: SBE 43 produces a voltage output and can be incorporated with any Sea-Bird CTD that accepts input from a 0-5 volt auxiliary sensor, while the SBE 43F produces a frequency output and can be integrated with an SBE 52-MP (Moored Profiler CTD) or used for OEM applications. The specifications below are common to both.

Specifications

Housing Plastic or titanium
Membrane

0.5 mil- fast response, typical for profile applications

1 mil- slower response, typical for moored applications

Depth rating

600 m (plastic) or 7000 m (titanium)

10500 m titanium housing available on request

Measurement range 120% of surface saturation
Initial accuracy 2% of saturation
Typical stability 0.5% per 1000 h

Further details can be found in the manufacturer's specification sheet.

Instrument Description for DY033 Titanium Frame CTD

CTD Unit and Auxiliary Sensors

The CTD unit comprised a Sea-Bird Electronics (SBE) 9plus underwater unit, an SBE 11plus deck unit, a NOC-S titanium frame 24-way frame and 24 10 L OTE Water Samplers; all of which were mounted on a stainless steel 24-way CTD frame. Attached to the CTD were two SBE 3P temperature sensors, two SBE 4C conductivity sensors, one Paroscientific Digiquartz pressure sensor, one SBE 43 dissolved oxygen sensor, two CTD 2-π Underwater PAR sensors, one WETLabs BBRTD light scattering sensor, one Benthos 916T altimeter one CTG Aquatracka MKIII fluorometer, one WETLabs C-Star CTG Aquatracka MKIII transmissometer and one Workhorse Monitor 300 Khz LADCP..

The CTD hit the the seabed on cast 014 which introduced a large offset into the data recorded by the primary conductivity sensor. This sensor was replaced before cast 021. The PAR sensor was removed for some of the deeper casts as it was only depth rated to 500 m.

Sensor unit Model Serial number Full specification Calibration dates (YYYY/MM/DD) Comments
CTD underwater unit SBE 9plus 09P-77801-1182 (Ti) SBE 9plus 2014-03-12 -
CTD deck unit SBE 11plus 11P-34173-0676 - 2015-01-06 -
Carousel NOCS Stainless steel 24-way frame SBE CTD TITA1 - - -
Pressure sensor Paroscientific Digiquartz 129735 Paroscientific Digiquartz 2014-03-12 -
Temperature sensor SBE 3P 3P-5700(Ti) SBE 03P 2015-01-23 -
Temperature sensor SBE 3P 3P-5785 (Ti) - 2015-01-23 -
Conductivity senor SBE 4C 4C-4138 (Ti) SBE 04C 2015-01-22 Attached until cast 019.
Conductivity sensor SBE 4C 4C-2571 (Ti) - 2015-06-12 Attached from cast 021.
Conductivity sensor SBE 4C 4C-4143 (Ti) - 2015-01-22 -
Dissolved oxygen sensor SBE 43 43-2055 SBE 43 2015-09-15 -
Altimeter Benthos PSA 916T 62679 Benthos Altimeter - -
Irradiance sensor (DWIRR) CTG 2-π PAR 02 (Ti) CTG 2-π PAR 2013-05-07 Measuring downwelling irradiance
Irradiance sensor (UWIRR) CTG 2-π PAR 04 (Ti) - 2013-11-21 Measuring upwelling irradiance
Light scattering sensor WETLabs BBRTD BBRTD-758R WETLabs BBRTD 2013-06-03 -
Fluorometer Chelsea MKIII Aquatracka 088244 Chelsea MKII Aquatracka 2015-01-21 -
Transmissometer WETLabs C-Star CTG Aquatracka MKIII 1718TR C-Star transmissometer 2015-04-15 -
LADCP Teledyne Workhorse Monitor 300 Khz LADCP 13399 Workhorse Monitor LADCP - -

Sea-Bird Electronics SBE 911 and SBE 917 series CTD profilers

The SBE 911 and SBE 917 series of conductivity-temperature-depth (CTD) units are used to collect hydrographic profiles, including temperature, conductivity and pressure as standard. Each profiler consists of an underwater unit and deck unit or SEARAM. Auxiliary sensors, such as fluorometers, dissolved oxygen sensors and transmissometers, and carousel water samplers are commonly added to the underwater unit.

Underwater unit

The CTD underwater unit (SBE 9 or SBE 9 plus) comprises a protective cage (usually with a carousel water sampler), including a main pressure housing containing power supplies, acquisition electronics, telemetry circuitry, and a suite of modular sensors. The original SBE 9 incorporated Sea-Bird's standard modular SBE 3 temperature sensor and SBE 4 conductivity sensor, and a Paroscientific Digiquartz pressure sensor. The conductivity cell was connected to a pump-fed plastic tubing circuit that could include auxiliary sensors. Each SBE 9 unit was custom built to individual specification. The SBE 9 was replaced in 1997 by an off-the-shelf version, termed the SBE 9 plus, that incorporated the SBE 3 plus (or SBE 3P) temperature sensor, SBE 4C conductivity sensor and a Paroscientific Digiquartz pressure sensor. Sensors could be connected to a pump-fed plastic tubing circuit or stand-alone.

Temperature, conductivity and pressure sensors

The conductivity, temperature, and pressure sensors supplied with Sea-Bird CTD systems have outputs in the form of variable frequencies, which are measured using high-speed parallel counters. The resulting count totals are converted to numeric representations of the original frequencies, which bear a direct relationship to temperature, conductivity or pressure. Sampling frequencies for these sensors are typically set at 24 Hz.

The temperature sensing element is a glass-coated thermistor bead, pressure-protected inside a stainless steel tube, while the conductivity sensing element is a cylindrical, flow-through, borosilicate glass cell with three internal platinum electrodes. Thermistor resistance or conductivity cell resistance, respectively, is the controlling element in an optimized Wien Bridge oscillator circuit, which produces a frequency output that can be converted to a temperature or conductivity reading. These sensors are available with depth ratings of 6800 m (aluminium housing) or 10500 m (titanium housing). The Paroscientific Digiquartz pressure sensor comprises a quartz crystal resonator that responds to pressure-induced stress, and temperature is measured for thermal compensation of the calculated pressure.

Additional sensors

Optional sensors for dissolved oxygen, pH, light transmission, fluorescence and others do not require the very high levels of resolution needed in the primary CTD channels, nor do these sensors generally offer variable frequency outputs. Accordingly, signals from the auxiliary sensors are acquired using a conventional voltage-input multiplexed A/D converter (optional). Some Sea-Bird CTDs use a strain gauge pressure sensor (Senso-Metrics) in which case their pressure output data is in the same form as that from the auxiliary sensors as described above.

Deck unit or SEARAM

Each underwater unit is connected to a power supply and data logging system: the SBE 11 (or SBE 11 plus) deck unit allows real-time interfacing between the deck and the underwater unit via a conductive wire, while the submersible SBE 17 (or SBE 17 plus) SEARAM plugs directly into the underwater unit and data are downloaded on recovery of the CTD. The combination of SBE 9 and SBE 17 or SBE 11 are termed SBE 917 or SBE 911, respectively, while the combinations of SBE 9 plus and SBE 17 plus or SBE 11 plus are termed SBE 917 plus or SBE 911 plus.

Specifications

Specifications for the SBE 9 plus underwater unit are listed below:

Parameter Range Initial accuracy Resolution at 24 Hz Response time
Temperature -5 to 35°C 0.001°C 0.0002°C 0.065 sec
Conductivity 0 to 7 S m-1 0.0003 S m-1 0.00004 S m-1 0.065 sec (pumped)
Pressure 0 to full scale (1400, 2000, 4200, 6800 or 10500 m) 0.015% of full scale 0.001% of full scale 0.015 sec

Further details can be found in the manufacturer's specification sheet.

Chelsea Technologies Group Aquatracka MKIII fluorometer

The Chelsea Technologies Group Aquatracka MKIII is a logarithmic response fluorometer. Filters are available to enable the instrument to measure chlorophyll, rhodamine, fluorescein and turbidity.

It uses a pulsed (5.5 Hz) xenon light source discharging along two signal paths to eliminate variations in the flashlamp intensity. The reference path measures the intensity of the light source whilst the signal path measures the intensity of the light emitted from the specimen under test. The reference signal and the emitted light signals are then applied to a ratiometric circuit. In this circuit, the ratio of returned signal to reference signal is computed and scaled logarithmically to achieve a wide dynamic range. The logarithmic conversion accuracy is maintained at better than one percent of the reading over the full output range of the instrument.

Two variants of the instrument are available, both manufactured in titanium, capable of operating in depths from shallow water down to 2000 m and 6000 m respectively. The optical characteristics of the instrument in its different detection modes are visible below:

Excitation Chlorophyll a Rhodamine Fluorescein Turbidity
Wavelength (nm) 430 500 485 440*
Bandwidth (nm) 105 70 22 80*
Emission Chlorophyll a Rhodamine Fluorescein Turbidity
Wavelength (nm) 685 590 530 440*
Bandwidth (nm) 30 45 30 80*

* The wavelengths for the turbidity filters are customer selectable but must be in the range 400 to 700 nm. The same wavelength is used in the excitation path and the emission path.

The instrument measures chlorophyll a, rhodamine and fluorescein with a concentration range of 0.01 µg l-1 to 100 µg l-1. The concentration range for turbidity is 0.01 to 100 FTU (other wavelengths are available on request).

The instrument accuracy is ± 0.02 µg l-1 (or ± 3% of the reading, whichever is greater) for chlorophyll a, rhodamine and fluorescein. The accuracy for turbidity, over a 0 - 10 FTU range, is ± 0.02 FTU (or ± 3% of the reading, whichever is greater).

Further details are available from the Aquatracka MKIII specification sheet.

Chelsea Technologies Group ALPHAtracka and ALPHAtracka II transmissometers

The Chelsea Technologies Group ALPHAtracka (the Mark I) and its successor, the ALPHAtracka II (the Mark II), are both accurate (< 0.3 % fullscale) transmissometers that measure the beam attenuation coefficient at 660 nm. Green (565 nm), yellow (590 nm) and blue (470 nm) wavelength variants are available on special order.

The instrument consists of a Transmitter/Reference Assembly and a Detector Assembly aligned and spaced apart by an open support frame. The housing and frame are both manufactured in titanium and are pressure rated to 6000 m depth.

The Transmitter/Reference housing is sealed by an end cap. Inside the housing an LED light source emits a collimated beam through a sealed window. The Detector housing is also sealed by an end cap. A signal photodiode is placed behind a sealed window to receive the collimated beam from the Transmitter.

The primary difference between the ALPHAtracka and ALPHAtracka II is that the Alphatracka II is implemented with surface-mount technology; this has enabled a much smaller diameter pressure housing to be used while retaining exactly the same optical train as in the Mark I. Data from the Mark II version are thus fully compatible with that already obtained with the Mark I. The performance of the Mark II is further enhanced by two electronic developments from Chelsea Technologies Group - firstly, all items are locked in a signal nulling loop of near infinite gain and, secondly, the signal output linearity is inherently defined by digital circuitry only.

Among other advantages noted above, these features ensure that the optical intensity of the Mark II, indicated by the output voltage, is accurately represented by a straight line interpolation between a reading near full-scale under known conditions and a zero reading when blanked off.

For optimum measurements in a wide range of environmental conditions, the Mark I and Mark II are available in 5 cm, 10 cm and 25 cm path length versions. Output is default factory set to 2.5 volts but can be adjusted to 5 volts on request.

Further details about the Mark II instrument are available from the Chelsea Technologies Group ALPHAtrackaII specification sheet.

Chelsea Technologies Photosynthetically Active Radiation (PAR) Irradiance Sensor

This sensor was originally designed to assist the study of marine photosynthesis. With the use of logarithmic amplication, the sensor covers a range of 6 orders of magnitude, which avoids setting up the sensor range for the expected signal level for different ambient conditions.

The sensor consists of a hollow PTFE 2-pi collector supported by a clear acetal dome diverting light to a filter and photodiode from which a cosine response is obtained. The sensor can be used in moorings, profiling or deployed in towed vehicles and can measure both upwelling and downwelling light.

Specifications

Operation depth 1000 m
Range 2000 to 0.002 µE m-2 s-1
Angular Detection Range ± 130° from normal incidence
Relative Spectral Sensitivity

flat to ± 3% from 450 to 700 nm

down 8% of 400 nm and 36% at 350 nm

Further details can be found in the manufacturer's specification sheet.

WETLabs Single-angle Backscattering Meter ECO BB

An optical scattering sensor that measures scattering at 117°. This angle was determined as a minimum convergence point for variations in the volume scattering function induced by suspended materials and water. The measured signal is less determined by the type and size of the materials in the water and is more directly correlated to their concentration.

Several versions are available, with minor differences in their specifications:

  • ECO BB(RT)provides analog or RS-232 serial output with 4000 count range
  • ECO BB(RT)D adds the possibility of being deployed in depths up to 6000 m while keeping the capabilities of ECO BB(RT)
  • ECO BB provides the capabilities of ECO BB(RT) with periodic sampling
  • ECO BBB is similar to ECO BB but with internal batteries for autonomous operation
  • ECO BBS is similar to ECO BB but with an integrated anti-fouling bio-wiper
  • ECO BBSB has the capabilities of ECO BBS but with internal batteries for autonomous operation

Specifications

Wavelength 471, 532, 660 nm
Sensitivity (m-1 sr-1)

1.2 x 10-5 at 470 nm

7.7 x 10-6 at 532 nm

3.8 x 10-6 at 660 nm

Typical range ~0.0024 to 5 m-1
Linearity 99% R2
Sample rate up to 8Hz
Temperature range 0 to 30°C
Depth rating

600 m (standard)

6000 m (deep)

Further details can be found in the manufacturer's specification sheet.

Paroscientific Absolute Pressure Transducers Series 3000 and 4000

Paroscientific Series 3000 and 4000 pressure transducers use a Digiquartz pressure sensor to provide high accuracy and precision data. The sensor comprises a quartz crystal resonator that responds to pressure-induced stress, and temperature is measured for thermal compensation of the calculated pressure.

The 3000 series of transducers includes one model, the 31K-101, whereas the 4000 series includes several models, listed in the table below. All transducers exhibit repeatability of better than ±0.01% full pressure scale, hysteresis of better than ±0.02% full scale and acceleration sensitivity of ±0.008% full scale /g (three axis average). Pressure resolution is better than 0.0001% and accuracy is typically 0.01% over a broad range of temperatures.

Differences between the models lie in their pressure and operating temperature ranges, as detailed below:

Model Max. pressure (psia) Max. pressure (MPa) Temperature range (°C)
31K-101 1000 6.9 -54 to 107
42K-101 2000 13.8 0 to 125
43K-101 3000 20.7 0 to 125
46K-101 6000 41.4 0 to 125
410K-101 10000 68.9 0 to 125
415K-101 15000 103 0 to 50
420K-101 20000 138 0 to 50
430K-101 30000 207 0 to 50
440K-101 40000 276 0 to 50

Further details can be found in the manufacturer's specification sheet.

Originator's processing document for DY033 CTD data

Sampling strategy

A total of 47 usable stainless steel frame CTD casts and 41 usable titanium frame CTD casts were performed during DY033, which sailed from Southampton on 11 July 2015 and docked in Southampton on 03 August 2015. The majority of the casts were performed at Shelf Seas Biogeochemistry process stations Candyfloss and CS2, with a further two CTD casts being performed at process station Benthic A. Further CTD casts were performed during a transect conducted between station Benthic A and the shelf edge, and in two more transects performed off the shelf edge.

CTD problems experienced during the cruise:

  • The titanium frame CTD hit the bottom during cast CTD014T, resulting in an offset in the primary conductivity (and thus salinity) data. The primary conductivity sensor was changed before cast CTD021T.
  • The PAR sensor was removed from the titanium frame CTD between casts CTD014T and CTD058T as it was only depth rated to 500 m.
  • Casts CTD038T and CTD039T were aborted due to termination failure. Usable data was collected from CTD038T but not from CTD039T.
  • On CTD057 (stainless steel frame CTD) the wire was caught in the sheave and damaged (a new termination was required). No data is available for this cast.
  • On CTD074 (stainless steel frame CTD) the oxygen sensor started reading unrealistically low values (approximately 160 µ mol-1 kg-1). This problem persisted in cast CTD075. The oxygen sensor was subsequently replaced with the new sensor being used for casts CTD076 onwards. The oxygen channel from casts 74 and 75 has been removed from the final version of the files.
  • There were problems with the data recorded by the replacement oxygen sensor on casts CTD078 and CTD090. The oxygen channel from casts CTD078 and CTD090 has been removed from the final version of the files.

Data Processing

For each CTD cast the following raw data files were generated:

  • DY033_XYZ.bl (a record of bottle firing locations)
  • DY033_XYZ.hdr (header file)
  • DY033_XYZ.hex (raw data file)
  • DY033_XYZ.con (configuration file)

where XYZ is the cast number of the CTD data series.

The following processing was performed by the Originator using the SBE Data Processing software (Seasave Version 7.23.2):

  1. DatCnv was used to read in the raw CTD data file (.hex) which contained the data in engineering units and apply calibrations as appropriate through the instrument configurations (.con) file.
  2. Bottle Summary was run to create a .btl file containing the average, standard deviation, min and max values recorded by the CTD instrument suite at bottle firings.
  3. Wild Edit was run to remove spikes in the pressure channel.
  4. Filter was run on the pressure channel to smooth out the high frequency data
  5. AlignCTD was run to advance the oxygen data from both the stainless steel and titanium frame CTDs by three seconds.
  6. CellTM was run using alpha = 0.03 and 1/beta = 7 (for both CTD packages), to correct for conductivity errors induced by the transfer of heat from the conductivity cell to the seawater.
  7. Derive was run to create the variables Salinity, Salinity 2, Oxygen SBE 43 and Oxygen Tau correction. The output file was then saved as DY033_XYZ_derive.cnv.
  8. BinAverage and Strip were run to average the data to 2Hz bins (0.5 seconds) and to remove the salinity and oxygen channels which were created when Derive was run. The output file was then saved as DY033_XYZ_derive_2Hz.cnv.

The originator then proceeded to process the data further in Matlab.

  1. The data from the 2HZ and 24HZ processed CTD data files were extracted and combined with metadata from the Event log to create .mat files for each series at both 2HZ and 24 HZ resolutions.
  2. Inspection of the raw turbidity data revealed that there was a bug in the Seasave DatCnv conversion module which resulted in it incorrectly converting the raw turbidity voltage into m-1 sr-1. Therefore, the originator re-derived turbidity manually using the following equation (SF = scale factor, DC = dark counts):

    CTDturb = CTDturb_raw x SF - (SF x DC)

  3. The originator manually inspected the 2Hz data files to identify the surface soak and then cropped the 2Hz and 24Hz data files to remove the surface soak from the data.
  4. The salinity, conductivity, temperature, oxygen, attenuation, turbidity and fluorescence channels in the 24Hz data files were all de-spiked using an automated routine, with the originator converting the spikes to NaN (not a number) values.
  5. Further manual de-spiking was carried out to identify larger periods of bad data.
  6. The 24Hz data were averaged into one decibar downcast only bins and liner interpolation was used to fill gaps in the profile.
  7. All channels except PAR were smoothed further using a 10 m running median.
  8. The salinity data were then calibrated using salinity samples collected by the CTD water bottles and analysed on a Guildline Autosal salinometer. The chlorophyll fluorescence and dissolved oxygen channels were calibrated against water bottle samples. A calibration could not be determined for titanium chlorophyll so this channel remains uncalibrated for the titanium frame CTD.
  9. It was this calibrated version of the data which were then ingested by BODC, although all other versions have been archived and are available on request.

Field Calibrations

Salinity

Stainless steel frame CTD

A total of 93 salinity samples were collected from the stainless steel frame CTD during DY033 and analysed on a Guildline Autosal salinometer. Using all samples the mean and standard deviation of residuals were calculated as 0.0012859 ± 0.047523 for the first sensor and 0.0018212 ±0.04726 for the second sensor. After removing the outliers where the difference between the Autosal and CTD values was greater than 1 standard deviation and/or > 0.002, the mean and stand deviation of residuals were reduced to -0.0036901 ± 0.0013353 for the first sensor and -0.0030173 ± 0.001501 for the second sensor. The following regressions were then applied to the CTD salinity profiles:

Sensor 1

Bottle Salinity = 0.99794 x CTD_salinity + 0.069241

R2 = 0.99994

Sensor 2:

Bottle salinity = 0.99983 x CTD_salinity + 0.0031738

R2 = 0.99992

Titanium frame CTD

A total of 46 salinity samples were collected from titanium frame CTD during DY033 and analysed on a Guildline Autosal salinometer. Following the CTD hitting the bottom on cast CTD014T, a much larger offset was introduced into the data from the primary conductivity sensor (for casts CTD015T, CTD017T and CTD019T). The sensor was then changed before cast CTD021T. Therefore, three separate calibrations were required for the salinity data from DY034:

  • One for casts CTD002T to CTD014T
  • One for casts CTD015T to CTD019T
  • One for casts CTD021T to CTD089T

Using all samples the mean and standard deviation of residuals for the primary sensor were calculated as -0.002075 ± 0.0028558 (CTD002T to CTD014T), +0.012975 ± 0030837 (CTD015T to CTD019T) and +0.0017941 ± 0.0042938 (CTD021T to CTD089T). The mean and standard deviation of residuals for the secondary sensor was -0.00090476 ± 0.013903. After removing the outliers where the difference between the Autosal and CTD values was greater than 1.5 standard deviations in the primary sensor (CT021T to CTD089T) and the secondary sensor, the mean and stand deviation of residuals were reduced to +0.00096562 ± 0.0025739 in the primary sensor (CTD021T to CTD089T) and +0.0012024 ± 0.0026419 for the secondary sensor. The following regressions were applied:

Sensor 1 (CTD002T to CTD014%:

Calibrated Salinity = 1.0249 x CTD salinity - 0.88376

R2 = 0.99539

Number of samples = 4

Sensor 1 (CTD015T to CTD019T):

Calibrated Salinity = 1.008 x CTD salinity - 0.27126

R2 = 0.99999

Number of samples = 4

Sensor 1 (CTD021T to CTD089T):

Calibrated salinity = 0.99753 x CTD_salinity + 0.08843

R2 = 0.99987

Number of samples = 32

Sensor 2:

Calibrated salinity = 0.99955 x CTD_salinity + 0.017088

R2 = 0.99986

Number of samples = 41

Chlorophyll

63 chlorophyll samples were collected during cruise DY034. Once all chlorophyll samples collected from the top 30 m of water during daylight hours were removed, a total of 29 chlorophyll samples remained to calibrate the CTD fluorometer attached to the stainless steel frame CTD. The originator used a linear regression to calibrate the chlorophyll fluorometer against the 29 chlorophyll samples, with the following calibration equation being used to calibrate the fluorometer:

CHL = 2.1084 x CTDfluor - 0.00007546

R2 = 0.79931

Oxygen

Stainless steel frame CTD

81 oxygen samples were collected from the stainless steel frame CTD to calibrate the dissolved oxygen sensor. The originator used a linear regression to calibrate the dissolved oxygen sensor against the 81 samples, with the following calibration equation being used to calibrate the dissolved oxygen sensor:

Oxygen = 1.0148 x CTDoxy + 8.5911

R2 = 0.9883

Titanium frame CTD

20 oxygen samples were collected from the titanium frame CTD to calibrate the dissolved oxygen sensor. The originator used a linear regression to calibrate the dissolved oxygen sensor against the 98 oxygen samples. Due to the small number of samples, the calibrated dissolved oxygen values recorded by the stainless steel frame CTD on consecutive casts were also used in the linear regression. The following calibration equation being used to calibrate the dissolved oxygen sensor:

Oxygen = 1.0038 x CTDoxy + 8.7088

R2 = 0.9441

More information on the processing carried out and calibrations applied by the data originator the can be found in the data originator's CTD Processing Report.

Processing by BODC of RRS Discovery DY033 CTD data

Several versions of the CTD data recorded during DY033 arrived at BODC in the form of ASCII and Matlab (.MAT) files. In addition to the raw CTD data, BODC were provided with the 24 Hz and 2 Hz versions created at the end of the originator's Seasave processing and at each subsequent stage of Matlab processing. The fully calibrated CTD data binned to 1db downcast bins were then reformatted to BODC's internal NetCDF format, however all earlier versions of the data supplied to BODC have been archived and are available on request. The following table shows the mapping of the originator's variables to the appropriate BODC parameter codes:

Originator's Variable Units Description BODC Parameter Code Units Comment
pres db Pressure (spatial co-ordinate) exerted by the water body by profiling pressure sensor and corrected to read zero at sea level PRESPR01 Decibars -
time elapsed [seconds] - - - This variable was not transferred.
temp1 °C Temperature of the water body TEMPST01 °C -
temp2 °C - - - This parameter was transferred then dropped following screening as there was no difference between the quality of the data from the first and second temperature sensor.
cond1 S m-1 Electrical conductivity of the water body by CTD CNDCST01 S m-1 -
cond2 S m-1 - - - This parameter was transferred then dropped following screening as there was no difference between the quality of the data from the first and second temperature sensor.
sal1 PSU PPractical salinity of the water body by CTD and computation using UNESCO 1983 algorithm PSALST01 Dimensionless derived from temp1 and cond1
sal2 PSU Practical salinity (second sensor) of the water body by CTD and computation using UNESCO 1983 algorithm PSALST02 Dimensionless derived from temp2 and cond2. This parameter was transferred then dropped following screening as there was no difference between the quality of the data from the first and second temperature sensor.
oxy_umoll µ mol l-1 Concentration of oxygen {O2 CAS 7782-44-7} per unit volume of the water body [dissolved plus reactive particulate phase] by in-situ sensor DOXYZZ01 µ mol l-1 -
fluor µ g l-1 Concentration of chlorophyll-a {chl-a} per unit volume of the water body [particulate >unknown phase] by in-situ chlorophyll fluorometer CPHLPR01 mg m-3 µ g l-1 = mg m-3
par W m-2 Downwelling 2-pi scalar irradiance as energy (PAR wavelengths) in the water body by 2-pi scalar radiometer DWIRPP01 W m-2 This parameter is only present in data from the titanium CTD until cast 014, at which point the instrument was removed
att m -1 Attenuance (red light wavelength) per unit length of the water body by 25cm path length red light transmissometer ATTNDR01 m -1 -
sigma_theta - - - - This variable was not transferred. BODC independently derive density during transfer
turb m-1 sr-1 Attenuance due to backscatter (650 nm wavelength at 117 degree incidence) by the water body [particulate >unknown phase] by in-situ optical backscatter measurement BB117R02 m-1 nm -1 sr-1 m-1 sr-1 = m-1 nm -1 sr-1

The following additional parameters were derived when the data were converted into QXF format:

Originator's Variable Units Description BODC Parameter Code Units Comment
- - Potential temperature of the water body by computation using UNESCO 1983 algorithm POTMCV01 °C Derived from TEMPST01, PSALST01 and PRESPR01
- - Sigma-theta of the water body by CTD and computation from salinity and potential temperature using UNESCO algorithm SIGTPR01 kg m-3 Derived from POTMCV01, PSALST01 and PRESPR01
- - Saturation of oxygen {O2} in the water body [dissolved plus reactive particulate phase] OXYSZZ01 % Derived from TEMPST01, PSALST01 and DOXYZZ01

The reformatted data were visualised using the in-house EDSERPLO software. Suspect data were marked by adding an appropriate quality control flag, and missing data by setting the data to an appropriate value and applying the quality control flag. The secondary data channels were dropped as there was no clear difference in the quality of the data from the primary and secondary channels.


Project Information

Shelf Sea Biogeochemistry (SSB) Programme

Shelf Sea Biogeochemistry (SSB) is a £10.5 million, six-year (2011-2017) research programme, jointly funded by the Natural Environment Research Council (NERC) and the Department for Environment, Food and Rural Affairs (DEFRA). The aim of the research is to reduce the uncertainty in our understanding of nutrient and carbon cycling within the shelf seas, and of their role in global biogeochemical cycles. SSB will also provide effective policy advice and make a significant contribution to the Living with Environmental Change programme.

Background

The Shelf Sea Biogeochemistry research programme directly relates to the delivery of the NERC Earth system science theme and aims to provide evidence that supports a number of marine policy areas and statutory requirements, such as the Marine Strategy Framework Directive and Marine and Climate Acts.

The shelf seas are highly productive compared to the open ocean, a productivity that underpins more than 90 per cent of global fisheries. Their importance to society extends beyond food production to include issues of biodiversity, carbon cycling and storage, waste disposal, nutrient cycling, recreation and renewable energy resources.

The shelf seas have been estimated to be the most valuable biome on Earth, but they are under considerable stress, as a result of anthropogenic nutrient loading, overfishing, habitat disturbance, climate change and other impacts.

However, even within the relatively well-studied European shelf seas, fundamental biogeochemical processes are poorly understood. For example: the role of shelf seas in carbon storage; in the global cycles of key nutrients (nitrogen, phosphorus, silicon and iron); and in determining primary and secondary production, and thereby underpinning the future delivery of many other ecosystem services.

Improved knowledge of such factors is not only required by marine policymakers; it also has the potential to increase the quality and cost-effectiveness of management decisions at the local, national and international levels under conditions of climate change.

The Shelf Sea Biogeochemistry research programme will take a holistic approach to the cycling of nutrients and carbon and the controls on primary and secondary production in UK and European shelf seas, to increase understanding of these processes and their role in wider biogeochemical cycles. It will thereby significantly improve predictive marine biogeochemical and ecosystem models over a range of scales.

The scope of the programme includes exchanges with the open ocean (transport on and off the shelf to a depth of around 500m), together with cycling, storage and release processes on the shelf slope, and air-sea exchange of greenhouse gases (carbon dioxide and nitrous oxide).

Further details are available on the SSB website.

Participants

15 different organisations are directly involved in research for SSB. These institutions are

  • Centre for Environment, Fisheries and Aquaculture Science (Cefas)
  • Meteorological Office
  • National Oceanography Centre (NOC)
  • Plymouth Marine Laboratory (PML)
  • Scottish Association for Marine Science (SAMS) / Scottish Marine Institute (SMI)
  • University of Aberdeen
  • University of Bangor
  • University of East Anglia (UEA)
  • University of Edinburgh
  • University of Essex
  • University of Liverpool
  • University of Oxford
  • Plymouth University
  • University of Portsmouth
  • University of Southampton

In addition, there are third party institutions carrying out sampling work for SSB, but who are not involved in the programme itself. These are:

  • The Agri-Food and Biosciences Institute (AFBI)
  • Irish Marine Institute (MI)
  • Marine Science Scotland (MSS)

Research details

Overall, five Work Packages have been funded by the SSB programme. These are described in brief below:

  • Work Package 1: Carbon and Nutrient Dynamics and Fluxes over Shelf Systems (CaNDyFloSS).
    This work package aims to perform a comprehensive study of the cycling of nutrients and carbon throughout the water column over the whole north-west European shelf. This will allow the fluxes of nutrients and carbon between the shelf and the deep ocean and atmosphere to be quantified, establishing the role of the north-west European continental shelf in the global carbon cycle.

  • Work Package 2: Biogeochemistry, macronutrient and carbon cycling in the benthic layer.
    This work package aims are to map the sensitivity and status of seabed habitats, based on physical conditions, ecological community structure and the size and dynamics of the nitrogen and carbon pools found there. This information will be used, in conjunction with some laboratory-based work, to generate an understanding of the potential impacts on the benthic community as a result of changing environmental conditions, such as rising CO2 levels.

  • Work Package 3: The supply of iron from shelf sediments to the ocean.
    The research for this work package addresses the question of how currents, tides, weather and marine chemistry allow new iron to be transported away from the shallow shelf waters around the United Kingdom (UK), to the nearby open ocean. This will ultimately allow an improved understanding of how the transport of iron in shelf waters and shelf sediments influences phytoplankton growth in open oceans. This in turn improves the understanding of carbon dioxide uptake by phytoplankton.

  • Work Package 4: Integrative modelling for Shelf Seas Biogeochemistry.
    The aim of this work package is the development of a new shelf seas biogeochemical model system, coupled to a state of the art physical model, that is capable of predicting regional impacts of environmental change of timescales from days to decades. It is envisaged that the combination of predictive tools and new knowledge developed in this work package will underpin development and implementation of marine policy and marine forecasting systems.

  • Work Package 5: Data synthesis and management of marine and coastal carbon (DSMMAC).
    This work package is funded by Defra and is also known by the name 'Blue Carbon'. The aim is to provide a process-based, quantitative assessment of the role of UK coastal waters and shelf seas in carbon storage and release, using existing data and understanding, and also emerging results from SSB fieldwork, experiments and modelling. Particular emphasis will be given to processes that may be influenced by human activities, and hence the opportunity for management interventions to enhance carbon sequestration.

Fieldwork and data collection

The campaign consists of the core cruises in the table below, to the marine shelf (and shelf-edge) of the Celtic Sea on board the NERC research vessels RRS Discovery and RRS James Cook. These cruises will focus on the physics and biogeochemistry of the benthic and pelagic zones of the water column, primarily around four main sampling sites in this area.

Cruise identifier Research ship Cruise dates Work packages
DY008 RRS Discovery March 2014 WP 2 and WP 3
JC105 RRS James Cook June 2014 WP 1, WP 2 and WP 3
DY026 RRS Discovery August 2014 WP1, WP 2 and WP 3
DY018 RRS Discovery November - December 2014 WP 1 and WP 3
DY021 (also known as DY008b) RRS Discovery March 2015 WP 2 and WP 3
DY029 RRS Discovery April 2015 WP 1 and WP 3
DY030 RRS Discovery May 2015 WP 2 and WP 3
DY033 RRS Discovery July 2015 WP 1 and WP 3
DY034 RRS Discovery August 2015 WP 2 and WP 3

Core cruises will be supplemented by partner cruises led by Cefas, MI, MSS, Bangor University and AFBI, spanning the shelf seas and shelf-edges around United Kingdom and Republic of Ireland.

Activities will include coring, Conductivity Temperature and Depth (CTD) deployments, Acoustic Doppler Current Profilers (ADCP) surveys, moorings and wire-walker deployments, benthic lander observatories, autonomous gliders and submersible surveys, Marine Snow Catcher particulate matter analysis, plankton net hauls, in-situ sediment flume investigations and laboratory incubations with core and sea water samples.


Shelf Sea Biogeochemistry (SSB) Programme Work Package 1: CaNDyFloSS

Carbon and Nutrient Dynamics and Fluxes over Shelf Systems (CaNDyFloSS) is a £2.76 million component of the Natural Environment Research Council (NERC) Shelf Sea Biogeochemistry (SSB) research programme, running from 2013 to 2017. It is jointly funded by NERC and the Department for Environment, Food and Rural Affairs (DEFRA). The aim of the research is to perform a comprehensive study of the cycling of nutrients and carbon throughout the water column over the whole north-west European shelf. This will allow the fluxes of nutrients and carbon between the shelf and the deep ocean and atmosphere to be quantified, establishing the role of the north-west European continental shelf in the global carbon cycle.

Background

Shelf seas are the primary regions of human marine resource exploitation, including both renewable and fossil fuel energy sources, recreation, trade and food production. They provide 90% of global fish catches which form an important source of food to much of the global population. They also play an important role in the ecosystem services provided by the oceans as a whole, in particular in storing carbon away from the atmosphere.

Physical and biochemical processes in shelf seas influence the removal of CO2 from the atmosphere and the subsequent storage of carbon in the deep ocean. Biological growth draws carbon out of the water, which is then replaced by carbon in CO2 from the atmosphere. In the shelf seas this growth is supported by terrestrial and open ocean sources of nutrients, implying intimate roles for both the terrestrial biosphere and the open ocean environment in regulating shelf sea climate services. The oceans can also be a major source or sink for other greenhouse gases, including nitrous oxide (N2O), with the shallow shelf sea thought to play a key role.

The spatial extent of the submerged continental shelves varies greatly. The NW European shelf sea is one of the largest and hence is likely to play a significant role in marine biogeochemical cycling, alongside providing a useful model for other systems. However, even in this relatively well studied region, there is a lack of detailed understanding of the principal controls on the cycling of carbon and the major nutrient elements, nitrogen, phosphorus and silicon. Consequently it is also difficult to predict how the cycling of these elements and hence the carbon removal they support may be altered by ongoing and potential future global change. This work package aims to address these uncertainties through a comprehensive study of the cycling of the major nutrients and carbon throughout the water column over the NW European shelf sea system.

Further details are available on the SSB website.

Participants

9 different organisations are directly involved in research for SSB Work Package 1. These institutions are

  • Centre for Environment, Fisheries and Aquaculture Science (Cefas)
  • National Oceanography Centre (NOC)
  • Plymouth Marine Laboratory (PML)
  • Scottish Association for Marine Science (SAMS) / Scottish Marine Institute (SMI)
  • University of Aberdeen
  • University of Bangor
  • University of East Anglia (UEA)
  • University of Liverpool
  • University of Southampton

In addition, there are third party institutions carrying out sampling work for SSB Work Package 1, but who are not involved in the programme itself. These are:

  • The Agri-Food and Biosciences Institute (AFBI)
  • Irish Marine Institute (MI)
  • Marine Science Scotland (MSS)

Objectives

Two overarching objectives are defined for this Work Package.

  • Objective 1: Estimate the size of the continental shelf carbon pump over the whole north-west European shelf.
    This will consist of two principal activities. (1) Over a 12 month period, observations of air-sea CO2 fluxes will be made to provide a synoptic estimate of the magnitude of carbon update by the whole shelf system. (2) Concentrations of carbon (C), nitrogen (N), phosphate (P) and silicate (Si) will be estimated in water flowing on and off the shelf. These estimates will be coupled to estimates of flow and dispersion along the shelf edge, through collaboration with the NERC Fluxes across Sloping Topography of the North East Atlantic (FASTNEt) programme to allow an observational estimate of the net off-shelf transport of C, N, P and Si.

  • Objective 2: Determine the relative importance of external nutrient sources and internal biogeochemical cycling in maintaining the continental shelf pump.
    Estimates of the flux of nutrients and carbon generated in Objective 1 will be used to determine the estimation of any excess of on-shelf nutrient supply, relative to that of carbon. Work Package 1 will then quantify the processes which govern internal biogeochemical cycling by measuring the uptake ratios of N, P, Si and C into phytoplankton and the element and energy balance of organic matter production by autotrophs. Potential modifications to the relative concentrations and uptake of C, N, P and Si in the thermocline and sediment food webs will also be assessed, as will the relative importance of microbial and zooplankton turnover in controlling C, N, P and Si.

Fieldwork and data collection

Data for Objective 1 will be provided using pCO2 systems aboard third party vessels and ferry boxes, along with measurements made through the FASTNEt programme and through the Work Package 1 process cruises detailed below. The third party cruises will be undertaken by Cefas, MI, MSS, University of Bangor and AFBI, spanning the shelf seas and shelf-edges around the United Kingdom and the Republic of Ireland.

The Work Package 1 process cruises will provide data for Objective 1 and Objective 2 and are listed in the table below. The study area is the marine shelf (and shelf-edge) of the Celtic Sea. Work will be carried out on board the NERC research vessels RRS Discovery and RRS James Cook. These cruises will focus on the physics and biogeochemistry of the benthic and pelagic zones of the water column, primarily around four main sampling sites in this area.

Cruise identifier Research ship Cruise dates Work packages
JC105 RRS James Cook June 2014 WP 1, WP 2 and WP 3
DY026 RRS Discovery August 2014 WP1, WP 2 and WP 3
DY018 RRS Discovery November - December 2014 WP 1 and WP 3
DY029 RRS Discovery April 2015 WP 1 and WP 3
DY033 RRS Discovery July 2015 WP 1 and WP 3

Activities will include Conductivity Temperature and Depth (CTD) deployments, Acoustic Doppler Current Profilers (ADCP) surveys, moorings and wire-walker deployments, autonomous gliders and submersible surveys, Marine Snow Catcher particulate matter analysis, plankton net hauls and laboratory incubations with sea water samples.


Data Activity or Cruise Information

Cruise

Cruise Name DY033 (GApr04)
Departure Date 2015-07-11
Arrival Date 2015-08-02
Principal Scientist(s)C Mark Moore (National Oceanography Centre, Southampton)
Ship RRS Discovery

Complete Cruise Metadata Report is available here


Fixed Station Information

Fixed Station Information

Station NameShelf Sea Biogeochemistry Fixed Station Candyfloss/CCS
CategoryOffshore area
Latitude49° 23.74' N
Longitude8° 35.44' W
Water depth below MSL144.0 m

Shelf Sea Biogeochemistry Fixed Station CANDYFLOSS/CCS

This station is one of two pelagic sites sampled on the Celtic Sea shelf as part of work package I of the Shelf Sea Biogeochemistry project. The station has a mean water depth 144 m at the following co-ordinates:

Box Corner Latitude Longitude
North-west corner 49.4194° -8.6188°
South-east corner 49.3719° -8.5624°

The position of this station relative to the other Shelf Sea Biogeochemistry sites can be seen from the figure below.

BODC image

Sampling History

DY008 JC105 DY026 DY018
CTD casts 1 3 6 29
SPI camera 4 - - -
STD casts - 2 1 -
Zooplankton net hauls - - 13 45
Box cores - - 2 6
Marine snow catcher - - 3 16
Stand Alone Pump Systems (SAPS) - - 3 3
Drifter Buoy - - 1 -

Mooring deployments

Latitude Longitude Water depth (m) Moored instrument Deployment date Recovery date Deployment cruise Recovery cruise Comments
49.3973° -8.6001° 150 Temperature chain 26-03-2014 16:51 UTC 19-06-2014 10:05 UTC DY008 JC105 Time corresponds to anchor in
49.4018° -8.5998° 150 NOCL ADCP Bedframe 27-03-2014 10:35 UTC 19-06-2014 10:51 UTC DY008 JC105 ADCP in-line mooring and bedframe
49.4021° -8.5951° 151 ODAS buoy 27-03-2014 16:03 UTC - DY008 - -
49.4019° -8.6037° 149 Cefas SmartBuoy 27-03-2014 19:08 UTC 31-05-2014 12:00 UTC DY008 Trials cruise Buoy broke free from tether and was recovered on a trials cruise
49.4021° -8.6032° 146 Cefas SmartBuoy 19-06-2014 14:29 UTC 21-08-2014 09:40 UTC JC105 DY026 -
49.4022° -8.6022° 147 Temperature chain 19-06-2014 17:08 UTC 21-08-2014 14:50 UTC JC105 DY026 -
49.4024° -8.6002° 148 ADCP mooring 22-06-2014 08:52 UTC 21-08-2014 13:39 UTC JC105 DY026 ADCP in-line mooring and bedframe
49.3995° -8.5976° 149 NOCL ADCP Bedframe 22-06-2014 10:47 UTC 21-08-2014 08:30 UTC JC105 DY026B -
49.4022° -8.6042° 149 Cefas SmartBuoy 21-08-2014 10:31 UTC - DY026 - -
49.3995° -8.5992° 149 NOCL ADCP Bedframe 22-08-2014 08:30 UTC 20-11/2014 14:20 UTC DY026B DY018 -
49.4005° -8.6060° 151 Temperature chain 22-08-2014 12:50 UTC 20-11-2014 16:27 UTC DY026 DY018 -
49.4011° -8.6010° 152 ADCP mooring 22-08-2014 15:09 UTC - DY026 - -
49.3989° -8.5760° 149 Wirewalker 10-11-2014 10:24 UTC 10-11-2014 10:36 UTC DY018 DY018 -
49.3993° -8.6025° 149 Temperature chain 21-11-2014 10:59 UTC 04-04-2014 11:55 UTC DY018 DY029 -
49.3990° -8.5977° 149 NOCL ADCP Bedframe 21-11-2014 11:38 UTC 03-08-2014 16:60 UTC DY018 DY034 -
49.4019° -8.6013° 149 ADCP mooring 22-11-2014 10:43 UTC - DY018 - -
49.4047° -8.6006° 150 Wirewalker 22-11-2014 11:23 UTC 26-11-2014 09:23 UTC DY018 DY018 -
49.3997° -8.6030° 147 Temperature chain 11-04-2015 10:22 UTC 25-07-2015 09:57 UTC DY029 DY033 -
49.3974° -8.59995° 147 NOCL ADCP Bedframe 11-04-2015 11:00 UTC 30-07-2015 17:14 UTC DY029 DY033 -

Related Fixed Station activities are detailed in Appendix 1


BODC Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
Blank Unqualified
< Below detection limit
> In excess of quoted value
A Taxonomic flag for affinis (aff.)
B Beginning of CTD Down/Up Cast
C Taxonomic flag for confer (cf.)
D Thermometric depth
E End of CTD Down/Up Cast
G Non-taxonomic biological characteristic uncertainty
H Extrapolated value
I Taxonomic flag for single species (sp.)
K Improbable value - unknown quality control source
L Improbable value - originator's quality control
M Improbable value - BODC quality control
N Null value
O Improbable value - user quality control
P Trace/calm
Q Indeterminate
R Replacement value
S Estimated value
T Interpolated value
U Uncalibrated
W Control value
X Excessive difference

SeaDataNet Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
0 no quality control
1 good value
2 probably good value
3 probably bad value
4 bad value
5 changed value
6 value below detection
7 value in excess
8 interpolated value
9 missing value
A value phenomenon uncertain
B nominal value
Q value below limit of quantification

Appendix 1: Shelf Sea Biogeochemistry Fixed Station Candyfloss/CCS

Related series for this Fixed Station are presented in the table below. Further information can be found by following the appropriate links.

If you are interested in these series, please be aware we offer a multiple file download service. Should your credentials be insufficient for automatic download, the service also offers a referral to our Enquiries Officer who may be able to negotiate access.

Series IdentifierData CategoryStart date/timeStart positionCruise
1891623Hydrography time series at depth2014-03-26 00:00:0049.39952 N, 8.60384 WRRS Discovery DY008
1891635Hydrography time series at depth2014-03-26 00:00:0049.39952 N, 8.60384 WRRS Discovery DY008
1891647Hydrography time series at depth2014-03-26 00:00:0049.39952 N, 8.60384 WRRS Discovery DY008
1891659Hydrography time series at depth2014-03-26 00:00:0049.39952 N, 8.60384 WRRS Discovery DY008
1891660Hydrography time series at depth2014-03-26 00:00:0049.39952 N, 8.60384 WRRS Discovery DY008
1891672Hydrography time series at depth2014-03-26 00:00:0049.39952 N, 8.60384 WRRS Discovery DY008
1891684Hydrography time series at depth2014-03-26 00:00:0049.39952 N, 8.60384 WRRS Discovery DY008
1892325Hydrography time series at depth2014-03-26 00:00:0049.39952 N, 8.60384 WRRS Discovery DY008
1892337Hydrography time series at depth2014-03-26 00:00:0049.39952 N, 8.60384 WRRS Discovery DY008
1892349Hydrography time series at depth2014-03-26 00:00:0049.39952 N, 8.60384 WRRS Discovery DY008
1892350Hydrography time series at depth2014-03-26 00:00:0049.39952 N, 8.60384 WRRS Discovery DY008
1892362Hydrography time series at depth2014-03-26 00:00:0049.39952 N, 8.60384 WRRS Discovery DY008
1892374Hydrography time series at depth2014-03-26 00:00:0049.39952 N, 8.60384 WRRS Discovery DY008
1892386Hydrography time series at depth2014-03-26 00:00:0049.39952 N, 8.60384 WRRS Discovery DY008
1892398Hydrography time series at depth2014-03-26 00:00:0049.39952 N, 8.60384 WRRS Discovery DY008
1891881Hydrography time series at depth2014-03-26 14:00:0149.39952 N, 8.60384 WRRS Discovery DY008
1891893Hydrography time series at depth2014-03-26 14:00:0149.39952 N, 8.60384 WRRS Discovery DY008
1891900Hydrography time series at depth2014-03-26 14:00:0149.39952 N, 8.60384 WRRS Discovery DY008
1891912Hydrography time series at depth2014-03-26 14:00:0149.39952 N, 8.60384 WRRS Discovery DY008
1892128Hydrography time series at depth2014-03-26 14:00:0249.39952 N, 8.60384 WRRS Discovery DY008
1892116Hydrography time series at depth2014-03-26 14:00:0349.39952 N, 8.60384 WRRS Discovery DY008
1892141Hydrography time series at depth2014-03-26 14:00:0349.39952 N, 8.60384 WRRS Discovery DY008
1892104Hydrography time series at depth2014-03-26 17:00:0349.39914 N, 8.60017 WRRS Discovery DY008
1965722Currents -subsurface Eulerian2014-03-26 19:30:0849.4018 N, 8.5998 WRRS Discovery DY008
1371573CTD or STD cast2014-03-27 19:38:0049.40252 N, 8.6032 WRRS Discovery DY008
1336692Water sample data2014-03-27 19:44:0049.40253 N, 8.60318 WRRS Discovery DY008
2117536Water sample data2014-03-27 19:44:0049.40253 N, 8.60318 WRRS Discovery DY008
2119094Water sample data2014-03-27 19:44:0049.40253 N, 8.60318 WRRS Discovery DY008
1891696Hydrography time series at depth2014-06-18 08:00:0049.40021 N, 8.60212 WRRS James Cook JC105
1891703Hydrography time series at depth2014-06-18 08:00:0049.40021 N, 8.60212 WRRS James Cook JC105
1891715Hydrography time series at depth2014-06-18 08:00:0049.40021 N, 8.60212 WRRS James Cook JC105
1891727Hydrography time series at depth2014-06-18 08:00:0049.40021 N, 8.60212 WRRS James Cook JC105
1891739Hydrography time series at depth2014-06-18 08:00:0049.40021 N, 8.60212 WRRS James Cook JC105
1891740Hydrography time series at depth2014-06-18 08:00:0049.40021 N, 8.60212 WRRS James Cook JC105
1891752Hydrography time series at depth2014-06-18 08:00:0049.40021 N, 8.60212 WRRS James Cook JC105
1891764Hydrography time series at depth2014-06-18 08:00:0049.40021 N, 8.60212 WRRS James Cook JC105
1892405Hydrography time series at depth2014-06-18 08:00:0049.40021 N, 8.60212 WRRS James Cook JC105
1892417Hydrography time series at depth2014-06-18 08:00:0049.40021 N, 8.60212 WRRS James Cook JC105
1892429Hydrography time series at depth2014-06-18 08:00:0049.40021 N, 8.60212 WRRS James Cook JC105
1892430Hydrography time series at depth2014-06-18 08:00:0049.40021 N, 8.60212 WRRS James Cook JC105
1892442Hydrography time series at depth2014-06-18 08:00:0049.40021 N, 8.60212 WRRS James Cook JC105
1892454Hydrography time series at depth2014-06-18 08:00:0049.40021 N, 8.60212 WRRS James Cook JC105
1892466Hydrography time series at depth2014-06-18 08:00:0049.40021 N, 8.60212 WRRS James Cook JC105
1892478Hydrography time series at depth2014-06-18 08:00:0049.40021 N, 8.60212 WRRS James Cook JC105
1372748CTD or STD cast2014-06-19 08:13:0049.40363 N, 8.6051 WRRS James Cook JC105
2103842Water sample data2014-06-19 08:19:0049.40368 N, 8.60512 WRRS James Cook JC105
2108103Water sample data2014-06-19 08:19:0049.40368 N, 8.60512 WRRS James Cook JC105
2143113Water sample data2014-06-19 08:19:0049.40368 N, 8.60512 WRRS James Cook JC105
1891924Hydrography time series at depth2014-06-19 16:00:0149.40021 N, 8.60212 WRRS James Cook JC105
1891936Hydrography time series at depth2014-06-19 16:00:0149.40021 N, 8.60212 WRRS James Cook JC105
1891948Hydrography time series at depth2014-06-19 16:00:0149.40021 N, 8.60212 WRRS James Cook JC105
1891961Hydrography time series at depth2014-06-19 16:00:0149.40021 N, 8.60212 WRRS James Cook JC105
1892177Hydrography time series at depth2014-06-19 16:00:0149.40021 N, 8.60212 WRRS James Cook JC105
1892165Hydrography time series at depth2014-06-19 16:00:0349.40021 N, 8.60212 WRRS James Cook JC105
1892189Hydrography time series at depth2014-06-19 16:00:0349.40021 N, 8.60212 WRRS James Cook JC105
1372761CTD or STD cast2014-06-19 17:58:0049.40052 N, 8.60737 WRRS James Cook JC105
2103854Water sample data2014-06-19 17:58:0049.40052 N, 8.60751 WRRS James Cook JC105
2108115Water sample data2014-06-19 17:58:0049.40052 N, 8.60751 WRRS James Cook JC105
2143125Water sample data2014-06-19 17:58:0049.40052 N, 8.60751 WRRS James Cook JC105
1892153Hydrography time series at depth2014-06-22 10:30:0349.39955 N, 8.5976 WRRS James Cook JC105
1965734Currents -subsurface Eulerian2014-06-22 10:56:4249.3995 N, 8.5976 WRRS James Cook JC105
1372970CTD or STD cast2014-06-22 11:14:0049.40063 N, 8.60095 WRRS James Cook JC105
2080269Water sample data2014-06-22 11:19:3049.40062 N, 8.60106 WRRS James Cook JC105
2103958Water sample data2014-06-22 11:19:3049.40062 N, 8.60106 WRRS James Cook JC105
2108219Water sample data2014-06-22 11:19:3049.40062 N, 8.60106 WRRS James Cook JC105
2143217Water sample data2014-06-22 11:19:3049.40062 N, 8.60106 WRRS James Cook JC105
1373008CTD or STD cast2014-08-05 05:10:0049.38633 N, 8.61883 WRRS Discovery DY026A
2127463Water sample data2014-08-05 05:34:0049.38659 N, 8.61882 WRRS Discovery DY026A
1373021CTD or STD cast2014-08-05 11:03:0049.38333 N, 8.61167 WRRS Discovery DY026A
2118122Water sample data2014-08-05 11:19:3049.38353 N, 8.61131 WRRS Discovery DY026A
2127475Water sample data2014-08-05 11:19:3049.38353 N, 8.61131 WRRS Discovery DY026A
1373033CTD or STD cast2014-08-05 16:10:0049.37167 N, 8.608 WRRS Discovery DY026A
2127487Water sample data2014-08-05 17:22:0049.37186 N, 8.60776 WRRS Discovery DY026A
1891776Hydrography time series at depth2014-08-18 06:00:0049.40315 N, 8.60022 WRRS Discovery DY026B
1891788Hydrography time series at depth2014-08-18 06:00:0049.40315 N, 8.60022 WRRS Discovery DY026B
1891807Hydrography time series at depth2014-08-18 06:00:0049.40315 N, 8.60022 WRRS Discovery DY026B
1891819Hydrography time series at depth2014-08-18 06:00:0049.40315 N, 8.60022 WRRS Discovery DY026B
1891820Hydrography time series at depth2014-08-18 06:00:0049.40315 N, 8.60022 WRRS Discovery DY026B
1891832Hydrography time series at depth2014-08-18 06:00:0049.40315 N, 8.60022 WRRS Discovery DY026B
1891844Hydrography time series at depth2014-08-18 06:00:0049.40315 N, 8.60022 WRRS Discovery DY026B
1891856Hydrography time series at depth2014-08-18 06:00:0049.40315 N, 8.60022 WRRS Discovery DY026B
1892491Hydrography time series at depth2014-08-18 06:00:0049.40315 N, 8.60022 WRRS Discovery DY026B
1892509Hydrography time series at depth2014-08-18 06:00:0049.40315 N, 8.60022 WRRS Discovery DY026B
1892510Hydrography time series at depth2014-08-18 06:00:0049.40315 N, 8.60022 WRRS Discovery DY026B
1892522Hydrography time series at depth2014-08-18 06:00:0049.40315 N, 8.60022 WRRS Discovery DY026B
1892534Hydrography time series at depth2014-08-18 06:00:0049.40315 N, 8.60022 WRRS Discovery DY026B
1892546Hydrography time series at depth2014-08-18 06:00:0049.40315 N, 8.60022 WRRS Discovery DY026B
1892558Hydrography time series at depth2014-08-18 06:00:0049.40315 N, 8.60022 WRRS Discovery DY026B
1892571Hydrography time series at depth2014-08-18 06:00:0049.40315 N, 8.60022 WRRS Discovery DY026B
1373395CTD or STD cast2014-08-21 11:47:0049.39765 N, 8.59462 WRRS Discovery DY026B
2118226Water sample data2014-08-21 12:00:0049.39764 N, 8.59464 WRRS Discovery DY026B
2127820Water sample data2014-08-21 12:00:0049.39764 N, 8.59464 WRRS Discovery DY026B
1892190Hydrography time series at depth2014-08-22 08:10:0349.39998 N, 8.6031 WRRS Discovery DY026B
1965746Currents -subsurface Eulerian2014-08-22 08:30:2849.3995 N, 8.5992 WRRS Discovery DY026B
1373402CTD or STD cast2014-08-22 08:42:0049.39955 N, 8.59947 WRRS Discovery DY026B
2127832Water sample data2014-08-22 08:55:0049.39956 N, 8.59947 WRRS Discovery DY026B
1891973Hydrography time series at depth2014-08-22 11:00:0149.40315 N, 8.60022 WRRS Discovery DY026B
1891985Hydrography time series at depth2014-08-22 11:00:0149.40315 N, 8.60022 WRRS Discovery DY026B
1891997Hydrography time series at depth2014-08-22 11:00:0149.40315 N, 8.60022 WRRS Discovery DY026B
1892000Hydrography time series at depth2014-08-22 11:00:0149.40315 N, 8.60022 WRRS Discovery DY026B
1892221Hydrography time series at depth2014-08-22 11:00:0249.40315 N, 8.60022 WRRS Discovery DY026B
1892208Hydrography time series at depth2014-08-22 11:00:0349.40315 N, 8.60022 WRRS Discovery DY026B
1892233Hydrography time series at depth2014-08-22 11:00:0349.40315 N, 8.60022 WRRS Discovery DY026B
1373414CTD or STD cast2014-08-22 17:38:0049.39723 N, 8.59747 WRRS Discovery DY026B
2127844Water sample data2014-08-22 17:45:3049.39723 N, 8.59747 WRRS Discovery DY026B
1371628CTD or STD cast2014-11-10 05:12:0049.40132 N, 8.5802 WRRS Discovery DY018 (GApr04)
2117573Water sample data2014-11-10 05:26:0049.40095 N, 8.57876 WRRS Discovery DY018 (GApr04)
2119764Water sample data2014-11-10 05:26:0049.40095 N, 8.57876 WRRS Discovery DY018 (GApr04)
2126693Water sample data2014-11-10 05:26:0049.40095 N, 8.57876 WRRS Discovery DY018 (GApr04)
2136510Water sample data2014-11-10 05:26:0049.40095 N, 8.57876 WRRS Discovery DY018 (GApr04)
1371641CTD or STD cast2014-11-10 09:11:0049.40013 N, 8.57592 WRRS Discovery DY018 (GApr04)
1371653CTD or STD cast2014-11-10 12:28:0049.39842 N, 8.5765 WRRS Discovery DY018 (GApr04)
2117585Water sample data2014-11-10 12:44:0049.39843 N, 8.57646 WRRS Discovery DY018 (GApr04)
2126700Water sample data2014-11-10 12:44:0049.39843 N, 8.57646 WRRS Discovery DY018 (GApr04)
2136522Water sample data2014-11-10 12:44:0049.39843 N, 8.57646 WRRS Discovery DY018 (GApr04)
1372355CTD or STD cast2014-11-10 16:35:0049.39997 N, 8.57225 WRRS Discovery DY018 (GApr04)
1371665CTD or STD cast2014-11-11 09:18:0049.39833 N, 8.57872 WRRS Discovery DY018 (GApr04)
1372367CTD or STD cast2014-11-11 10:55:0049.39835 N, 8.5787 WRRS Discovery DY018 (GApr04)
2119985Water sample data2014-11-11 11:04:0049.39835 N, 8.57871 WRRS Discovery DY018 (GApr04)
2121375Water sample data2014-11-11 11:04:0049.39835 N, 8.57871 WRRS Discovery DY018 (GApr04)
2126933Water sample data2014-11-11 11:04:0049.39835 N, 8.57871 WRRS Discovery DY018 (GApr04)
1371677CTD or STD cast2014-11-11 12:14:0049.39833 N, 8.5787 WRRS Discovery DY018 (GApr04)
2117597Water sample data2014-11-11 12:34:0049.39834 N, 8.57871 WRRS Discovery DY018 (GApr04)
2119776Water sample data2014-11-11 12:34:0049.39834 N, 8.57871 WRRS Discovery DY018 (GApr04)
2126712Water sample data2014-11-11 12:34:0049.39834 N, 8.57871 WRRS Discovery DY018 (GApr04)
2136534Water sample data2014-11-11 12:34:0049.39834 N, 8.57871 WRRS Discovery DY018 (GApr04)
1371689CTD or STD cast2014-11-11 14:08:0049.39832 N, 8.5793 WRRS Discovery DY018 (GApr04)
1371690CTD or STD cast2014-11-11 18:12:0049.39932 N, 8.57738 WRRS Discovery DY018 (GApr04)
1371708CTD or STD cast2014-11-12 05:15:0049.39878 N, 8.57657 WRRS Discovery DY018 (GApr04)
2117604Water sample data2014-11-12 05:27:0049.39877 N, 8.57656 WRRS Discovery DY018 (GApr04)
2126724Water sample data2014-11-12 05:27:0049.39877 N, 8.57656 WRRS Discovery DY018 (GApr04)
2136546Water sample data2014-11-12 05:27:0049.39877 N, 8.57656 WRRS Discovery DY018 (GApr04)
1371721CTD or STD cast2014-11-12 09:11:0049.39908 N, 8.57658 WRRS Discovery DY018 (GApr04)
1372379CTD or STD cast2014-11-12 10:56:0049.39938 N, 8.57462 WRRS Discovery DY018 (GApr04)
2119997Water sample data2014-11-12 10:58:3049.39938 N, 8.57464 WRRS Discovery DY018 (GApr04)
2121387Water sample data2014-11-12 10:58:3049.39938 N, 8.57464 WRRS Discovery DY018 (GApr04)
2126945Water sample data2014-11-12 10:58:3049.39938 N, 8.57464 WRRS Discovery DY018 (GApr04)
1371733CTD or STD cast2014-11-12 12:30:0049.3994 N, 8.57402 WRRS Discovery DY018 (GApr04)
2117616Water sample data2014-11-12 12:52:3049.39943 N, 8.57404 WRRS Discovery DY018 (GApr04)
2119788Water sample data2014-11-12 12:52:3049.39943 N, 8.57404 WRRS Discovery DY018 (GApr04)
2126736Water sample data2014-11-12 12:52:3049.39943 N, 8.57404 WRRS Discovery DY018 (GApr04)
2136558Water sample data2014-11-12 12:52:3049.39943 N, 8.57404 WRRS Discovery DY018 (GApr04)
1892583Hydrography time series at depth2014-11-20 06:00:0049.398 N, 8.60783 WRRS Discovery DY018 (GApr04)
1892595Hydrography time series at depth2014-11-20 06:00:0049.398 N, 8.60783 WRRS Discovery DY018 (GApr04)
1892602Hydrography time series at depth2014-11-20 06:00:0049.398 N, 8.60783 WRRS Discovery DY018 (GApr04)
1892614Hydrography time series at depth2014-11-20 06:00:0049.398 N, 8.60783 WRRS Discovery DY018 (GApr04)
1892626Hydrography time series at depth2014-11-20 06:00:0049.398 N, 8.60783 WRRS Discovery DY018 (GApr04)
1892638Hydrography time series at depth2014-11-20 06:00:0049.398 N, 8.60783 WRRS Discovery DY018 (GApr04)
1892651Hydrography time series at depth2014-11-20 06:00:0049.398 N, 8.60783 WRRS Discovery DY018 (GApr04)
1892663Hydrography time series at depth2014-11-20 06:00:0049.398 N, 8.60783 WRRS Discovery DY018 (GApr04)
1892779Hydrography time series at depth2014-11-20 06:00:0049.398 N, 8.60783 WRRS Discovery DY018 (GApr04)
1892780Hydrography time series at depth2014-11-20 06:00:0049.398 N, 8.60783 WRRS Discovery DY018 (GApr04)
1892792Hydrography time series at depth2014-11-20 06:00:0049.398 N, 8.60783 WRRS Discovery DY018 (GApr04)
1892811Hydrography time series at depth2014-11-20 06:00:0049.398 N, 8.60783 WRRS Discovery DY018 (GApr04)
1892823Hydrography time series at depth2014-11-20 06:00:0049.398 N, 8.60783 WRRS Discovery DY018 (GApr04)
1892835Hydrography time series at depth2014-11-20 06:00:0049.398 N, 8.60783 WRRS Discovery DY018 (GApr04)
1892847Hydrography time series at depth2014-11-20 06:00:0049.398 N, 8.60783 WRRS Discovery DY018 (GApr04)
1372078CTD or STD cast2014-11-20 09:32:0049.39257 N, 8.59262 WRRS Discovery DY018 (GApr04)
1892036Hydrography time series at depth2014-11-21 06:00:0149.398 N, 8.60783 WRRS Discovery DY018 (GApr04)
1892048Hydrography time series at depth2014-11-21 06:00:0149.398 N, 8.60783 WRRS Discovery DY018 (GApr04)
1892257Hydrography time series at depth2014-11-21 06:00:0149.398 N, 8.60783 WRRS Discovery DY018 (GApr04)
1892269Hydrography time series at depth2014-11-21 06:00:0149.398 N, 8.60783 WRRS Discovery DY018 (GApr04)
1892270Hydrography time series at depth2014-11-21 06:00:0149.398 N, 8.60783 WRRS Discovery DY018 (GApr04)
1372091CTD or STD cast2014-11-21 08:43:0049.40658 N, 8.59923 WRRS Discovery DY018 (GApr04)
1892245Hydrography time series at depth2014-11-21 09:10:0349.39903 N, 8.59772 WRRS Discovery DY018 (GApr04)
1891868Hydrography time series at depth2014-11-21 09:45:0049.398 N, 8.60783 WRRS Discovery DY018 (GApr04)
1965758Currents -subsurface Eulerian2014-11-21 11:50:1749.399 N, 8.5977 WRRS Discovery DY018 (GApr04)
1372109CTD or STD cast2014-11-21 18:18:0049.39898 N, 8.58423 WRRS Discovery DY018 (GApr04)
1372110CTD or STD cast2014-11-22 05:05:0049.38768 N, 8.58718 WRRS Discovery DY018 (GApr04)
2117757Water sample data2014-11-22 05:16:0049.39355 N, 8.58717 WRRS Discovery DY018 (GApr04)
2126865Water sample data2014-11-22 05:16:0049.39355 N, 8.58717 WRRS Discovery DY018 (GApr04)
2136675Water sample data2014-11-22 05:16:0049.39355 N, 8.58717 WRRS Discovery DY018 (GApr04)
1372122CTD or STD cast2014-11-22 06:52:0049.39352 N, 8.58718 WRRS Discovery DY018 (GApr04)
1372134CTD or STD cast2014-11-22 08:05:0049.39342 N, 8.58722 WRRS Discovery DY018 (GApr04)
2119868Water sample data2014-11-22 08:09:0049.39343 N, 8.58723 WRRS Discovery DY018 (GApr04)
1372263CTD or STD cast2014-11-25 05:11:0049.40117 N, 8.5835 WRRS Discovery DY018 (GApr04)
2117769Water sample data2014-11-25 05:21:3049.40168 N, 8.58234 WRRS Discovery DY018 (GApr04)
2119900Water sample data2014-11-25 05:21:3049.40168 N, 8.58234 WRRS Discovery DY018 (GApr04)
2126877Water sample data2014-11-25 05:21:3049.40168 N, 8.58234 WRRS Discovery DY018 (GApr04)
2136687Water sample data2014-11-25 05:21:3049.40168 N, 8.58234 WRRS Discovery DY018 (GApr04)
1372275CTD or STD cast2014-11-25 12:17:0049.3992 N, 8.58198 WRRS Discovery DY018 (GApr04)
2117770Water sample data2014-11-25 12:27:0049.3992 N, 8.58198 WRRS Discovery DY018 (GApr04)
2119912Water sample data2014-11-25 12:27:0049.3992 N, 8.58198 WRRS Discovery DY018 (GApr04)
2126889Water sample data2014-11-25 12:27:0049.3992 N, 8.58198 WRRS Discovery DY018 (GApr04)
2136699Water sample data2014-11-25 12:27:0049.3992 N, 8.58198 WRRS Discovery DY018 (GApr04)
1372287CTD or STD cast2014-11-25 15:41:0049.41468 N, 8.59318 WRRS Discovery DY018 (GApr04)
2119924Water sample data2014-11-25 15:46:3049.41469 N, 8.59317 WRRS Discovery DY018 (GApr04)
1372299CTD or STD cast2014-11-26 08:05:0049.40572 N, 8.5958 WRRS Discovery DY018 (GApr04)
2119936Water sample data2014-11-26 08:10:3049.40572 N, 8.5958 WRRS Discovery DY018 (GApr04)
1892024Hydrography time series at depth2014-11-26 10:10:0149.398 N, 8.60783 WRRS Discovery DY018 (GApr04)
1892012Hydrography time series at depth2014-11-27 13:45:0149.398 N, 8.60783 WRRS Discovery DY018 (GApr04)
2137710Water sample data2014-11-29 13:34:0049.40473 N, 8.58419 WRRS Discovery DY018 (GApr04)
1372619CTD or STD cast2014-11-29 14:13:0049.40423 N, 8.58532 WRRS Discovery DY018 (GApr04)
2118017Water sample data2014-11-29 14:19:3049.40423 N, 8.58532 WRRS Discovery DY018 (GApr04)
2120187Water sample data2014-11-29 14:19:3049.40423 N, 8.58532 WRRS Discovery DY018 (GApr04)
2121627Water sample data2014-11-29 14:19:3049.40423 N, 8.58532 WRRS Discovery DY018 (GApr04)
2127174Water sample data2014-11-29 14:19:3049.40423 N, 8.58532 WRRS Discovery DY018 (GApr04)
2137691Water sample data2014-11-29 14:19:3049.40423 N, 8.58532 WRRS Discovery DY018 (GApr04)
1372620CTD or STD cast2014-11-30 10:07:0049.40512 N, 8.57657 WRRS Discovery DY018 (GApr04)
1624393CTD or STD cast2015-03-22 06:42:0049.4035 N, 8.59667 WRRS Discovery DY021
1624400CTD or STD cast2015-03-22 07:42:0049.3998 N, 8.59992 WRRS Discovery DY021
1624553CTD or STD cast2015-03-22 09:07:0049.39983 N, 8.6002 WRRS Discovery DY021
2119696Water sample data2015-03-22 09:16:0049.39984 N, 8.60019 WRRS Discovery DY021
2121688Water sample data2015-03-22 09:16:0049.39984 N, 8.60019 WRRS Discovery DY021
2127426Water sample data2015-03-22 09:16:0049.39984 N, 8.60019 WRRS Discovery DY021
2134355Water sample data2015-03-22 09:16:0049.39984 N, 8.60019 WRRS Discovery DY021
1624412CTD or STD cast2015-03-22 10:24:0049.39987 N, 8.6002 WRRS Discovery DY021
2135900Water sample data2015-03-22 10:26:3049.39984 N, 8.60019 WRRS Discovery DY021
1624424CTD or STD cast2015-03-22 12:09:0049.4068 N, 8.59272 WRRS Discovery DY021
2118078Water sample data2015-03-22 12:17:3049.40658 N, 8.59401 WRRS Discovery DY021
2127334Water sample data2015-03-22 12:17:3049.40658 N, 8.59401 WRRS Discovery DY021
2135912Water sample data2015-03-22 12:17:3049.40658 N, 8.59401 WRRS Discovery DY021
1624436CTD or STD cast2015-03-22 15:08:0049.4121 N, 8.60152 WRRS Discovery DY021
1624448CTD or STD cast2015-03-23 13:12:0049.41003 N, 8.59638 WRRS Discovery DY021
2127346Water sample data2015-03-23 13:21:3049.41001 N, 8.59634 WRRS Discovery DY021
2135924Water sample data2015-03-23 13:21:3049.41001 N, 8.59634 WRRS Discovery DY021
2118576Water sample data2015-04-02 11:04:0048.20486 N, 10.05389 WRRS Discovery DY029 (GApr04)
1625998CTD or STD cast2015-04-03 14:30:0049.38993 N, 8.59247 WRRS Discovery DY029 (GApr04)
1627016CTD or STD cast2015-04-03 15:38:0049.38983 N, 8.59233 WRRS Discovery DY029 (GApr04)
1626001CTD or STD cast2015-04-03 16:46:0049.38992 N, 8.59245 WRRS Discovery DY029 (GApr04)
1626013CTD or STD cast2015-04-04 02:05:0049.38952 N, 8.5932 WRRS Discovery DY029 (GApr04)
2118251Water sample data2015-04-04 02:23:0049.38951 N, 8.59321 WRRS Discovery DY029 (GApr04)
2136731Water sample data2015-04-04 02:23:0049.38951 N, 8.59321 WRRS Discovery DY029 (GApr04)
1626025CTD or STD cast2015-04-04 07:09:0049.39268 N, 8.56323 WRRS Discovery DY029 (GApr04)
1626037CTD or STD cast2015-04-04 12:49:0049.39783 N, 8.6045 WRRS Discovery DY029 (GApr04)
2118263Water sample data2015-04-04 13:07:3049.39794 N, 8.60401 WRRS Discovery DY029 (GApr04)
2136743Water sample data2015-04-04 13:07:3049.39794 N, 8.60401 WRRS Discovery DY029 (GApr04)
1626049CTD or STD cast2015-04-04 15:11:0049.39633 N, 8.60917 WRRS Discovery DY029 (GApr04)
1626050CTD or STD cast2015-04-05 07:56:0049.3878 N, 8.56087 WRRS Discovery DY029 (GApr04)
1971371Hydrography vertical profile2015-04-05 14:12:0549.40465 N, 8.597 WRRS Discovery DY029 (GApr04)
1626062CTD or STD cast2015-04-05 14:52:0049.40542 N, 8.59513 WRRS Discovery DY029 (GApr04)
2118275Water sample data2015-04-05 15:14:0049.40549 N, 8.59515 WRRS Discovery DY029 (GApr04)
2136755Water sample data2015-04-05 15:14:0049.40549 N, 8.59515 WRRS Discovery DY029 (GApr04)
1627028CTD or STD cast2015-04-05 18:41:0049.40943 N, 8.58985 WRRS Discovery DY029 (GApr04)
1626074CTD or STD cast2015-04-06 02:14:0049.40517 N, 8.58817 WRRS Discovery DY029 (GApr04)
2118287Water sample data2015-04-06 02:30:3049.40512 N, 8.58816 WRRS Discovery DY029 (GApr04)
2136767Water sample data2015-04-06 02:30:3049.40512 N, 8.58816 WRRS Discovery DY029 (GApr04)
1626338CTD or STD cast2015-04-11 02:10:0049.39707 N, 8.58157 WRRS Discovery DY029 (GApr04)
2118318Water sample data2015-04-11 02:23:3049.39698 N, 8.58163 WRRS Discovery DY029 (GApr04)
2136823Water sample data2015-04-11 02:23:3049.39698 N, 8.58163 WRRS Discovery DY029 (GApr04)
1892061Hydrography time series at depth2015-04-11 10:25:0049.40188 N, 8.60415 WRRS Discovery DY029 (GApr04)
1892085Hydrography time series at depth2015-04-11 10:25:0049.40188 N, 8.60415 WRRS Discovery DY029 (GApr04)
1892675Hydrography time series at depth2015-04-11 10:25:0049.40188 N, 8.60415 WRRS Discovery DY029 (GApr04)
1892687Hydrography time series at depth2015-04-11 10:25:0049.40188 N, 8.60415 WRRS Discovery DY029 (GApr04)
1892699Hydrography time series at depth2015-04-11 10:25:0049.40188 N, 8.60415 WRRS Discovery DY029 (GApr04)
1892706Hydrography time series at depth2015-04-11 10:25:0049.40188 N, 8.60415 WRRS Discovery DY029 (GApr04)
1892718Hydrography time series at depth2015-04-11 10:25:0049.40188 N, 8.60415 WRRS Discovery DY029 (GApr04)
1892731Hydrography time series at depth2015-04-11 10:25:0049.40188 N, 8.60415 WRRS Discovery DY029 (GApr04)
1892743Hydrography time series at depth2015-04-11 10:25:0049.40188 N, 8.60415 WRRS Discovery DY029 (GApr04)
1892755Hydrography time series at depth2015-04-11 10:25:0049.40188 N, 8.60415 WRRS Discovery DY029 (GApr04)
1892767Hydrography time series at depth2015-04-11 10:25:0049.40188 N, 8.60415 WRRS Discovery DY029 (GApr04)
1892859Hydrography time series at depth2015-04-11 10:25:0049.40188 N, 8.60415 WRRS Discovery DY029 (GApr04)
1892860Hydrography time series at depth2015-04-11 10:25:0049.40188 N, 8.60415 WRRS Discovery DY029 (GApr04)
1892872Hydrography time series at depth2015-04-11 10:25:0049.40188 N, 8.60415 WRRS Discovery DY029 (GApr04)
1892884Hydrography time series at depth2015-04-11 10:25:0049.40188 N, 8.60415 WRRS Discovery DY029 (GApr04)
1892896Hydrography time series at depth2015-04-11 10:25:0049.40188 N, 8.60415 WRRS Discovery DY029 (GApr04)
1892903Hydrography time series at depth2015-04-11 10:25:0049.40188 N, 8.60415 WRRS Discovery DY029 (GApr04)
1892915Hydrography time series at depth2015-04-11 10:25:0049.40188 N, 8.60415 WRRS Discovery DY029 (GApr04)
1892073Hydrography time series at depth2015-04-11 10:25:0149.40188 N, 8.60415 WRRS Discovery DY029 (GApr04)
1892097Hydrography time series at depth2015-04-11 10:25:0149.40188 N, 8.60415 WRRS Discovery DY029 (GApr04)
1892282Hydrography time series at depth2015-04-11 10:25:0149.40069 N, 8.60131 WRRS Discovery DY029 (GApr04)
1892294Hydrography time series at depth2015-04-11 10:25:0149.40188 N, 8.60415 WRRS Discovery DY029 (GApr04)
1892301Hydrography time series at depth2015-04-11 10:25:0149.40188 N, 8.60415 WRRS Discovery DY029 (GApr04)
1892313Hydrography time series at depth2015-04-11 10:25:0549.40188 N, 8.60415 WRRS Discovery DY029 (GApr04)
1965771Currents -subsurface Eulerian2015-04-11 11:06:1549.3974 N, 8.59995 WRRS Discovery DY029 (GApr04)
1626351CTD or STD cast2015-04-11 11:28:0049.39682 N, 8.60042 WRRS Discovery DY029 (GApr04)
1626363CTD or STD cast2015-04-11 17:10:0049.41382 N, 8.59457 WRRS Discovery DY029 (GApr04)
1627169CTD or STD cast2015-04-12 05:47:0049.4139 N, 8.58948 WRRS Discovery DY029 (GApr04)
2137119Water sample data2015-04-12 06:02:3049.41389 N, 8.58947 WRRS Discovery DY029 (GApr04)
2137722Water sample data2015-04-12 06:17:0048.20475 N, 10.05382 WRRS Discovery DY029 (GApr04)
2118379Water sample data2015-04-15 02:13:3049.40959 N, 8.58598 WRRS Discovery DY029 (GApr04)
2136872Water sample data2015-04-15 02:13:3049.40959 N, 8.58598 WRRS Discovery DY029 (GApr04)
1626455CTD or STD cast2015-04-15 02:25:0049.40958 N, 8.58597 WRRS Discovery DY029 (GApr04)
1626467CTD or STD cast2015-04-15 08:39:0049.4065 N, 8.5995 WRRS Discovery DY029 (GApr04)
2118380Water sample data2015-04-15 12:27:3049.39234 N, 8.59341 WRRS Discovery DY029 (GApr04)
2136884Water sample data2015-04-15 12:27:3049.39234 N, 8.59341 WRRS Discovery DY029 (GApr04)
1626479CTD or STD cast2015-04-15 12:43:0049.39233 N, 8.59342 WRRS Discovery DY029 (GApr04)
1626480CTD or STD cast2015-04-15 15:39:0049.39342 N, 8.59342 WRRS Discovery DY029 (GApr04)
1626492CTD or STD cast2015-04-16 08:24:0049.39237 N, 8.59338 WRRS Discovery DY029 (GApr04)
1626511CTD or STD cast2015-04-16 12:41:0049.396 N, 8.61493 WRRS Discovery DY029 (GApr04)
2118392Water sample data2015-04-16 12:52:3049.39601 N, 8.61494 WRRS Discovery DY029 (GApr04)
2136896Water sample data2015-04-16 12:52:3049.39601 N, 8.61494 WRRS Discovery DY029 (GApr04)
1627213CTD or STD cast2015-04-16 13:34:0049.396 N, 8.61495 WRRS Discovery DY029 (GApr04)
2127868Water sample data2015-04-17 15:50:0048.20475 N, 10.05382 WRRS Discovery DY029 (GApr04)
2118423Water sample data2015-04-20 02:27:0049.40103 N, 8.61899 WRRS Discovery DY029 (GApr04)
2136915Water sample data2015-04-20 02:27:0049.40103 N, 8.61899 WRRS Discovery DY029 (GApr04)
1626688CTD or STD cast2015-04-20 02:40:0049.4019 N, 8.61898 WRRS Discovery DY029 (GApr04)
1626707CTD or STD cast2015-04-20 08:26:0049.402 N, 8.61898 WRRS Discovery DY029 (GApr04)
1626719CTD or STD cast2015-04-20 09:23:0049.40112 N, 8.62022 WRRS Discovery DY029 (GApr04)
2118435Water sample data2015-04-20 12:13:3049.40108 N, 8.62106 WRRS Discovery DY029 (GApr04)
2136927Water sample data2015-04-20 12:13:3049.40108 N, 8.62106 WRRS Discovery DY029 (GApr04)
1626720CTD or STD cast2015-04-20 12:29:0049.401 N, 8.62237 WRRS Discovery DY029 (GApr04)
1626732CTD or STD cast2015-04-20 16:00:0049.42187 N, 8.61768 WRRS Discovery DY029 (GApr04)
1626744CTD or STD cast2015-04-20 19:21:0049.40587 N, 8.6191 WRRS Discovery DY029 (GApr04)
1626756CTD or STD cast2015-04-21 08:36:0049.40163 N, 8.62033 WRRS Discovery DY029 (GApr04)
2118447Water sample data2015-04-21 12:46:0049.40123 N, 8.62146 WRRS Discovery DY029 (GApr04)
2136939Water sample data2015-04-21 12:46:0049.40123 N, 8.62146 WRRS Discovery DY029 (GApr04)
1626768CTD or STD cast2015-04-21 13:02:0049.40038 N, 8.62145 WRRS Discovery DY029 (GApr04)
1627298CTD or STD cast2015-04-21 13:44:0049.40117 N, 8.6215 WRRS Discovery DY029 (GApr04)
2118496Water sample data2015-04-25 02:12:0049.40151 N, 8.61955 WRRS Discovery DY029 (GApr04)
2136964Water sample data2015-04-25 02:12:0049.40151 N, 8.61955 WRRS Discovery DY029 (GApr04)
1626873CTD or STD cast2015-04-25 02:24:0049.40152 N, 8.61943 WRRS Discovery DY029 (GApr04)
1627409CTD or STD cast2015-04-25 04:43:0049.37983 N, 8.5722 WRRS Discovery DY029 (GApr04)
1627410CTD or STD cast2015-04-25 04:59:0049.37982 N, 8.57222 WRRS Discovery DY029 (GApr04)
1626916CTD or STD cast2015-04-25 05:22:0049.40818 N, 8.5873 WRRS Discovery DY029 (GApr04)
1626885CTD or STD cast2015-04-25 10:22:0049.4064 N, 8.59823 WRRS Discovery DY029 (GApr04)
2118503Water sample data2015-04-25 12:15:0049.40946 N, 8.59129 WRRS Discovery DY029 (GApr04)
2136976Water sample data2015-04-25 12:15:0049.40946 N, 8.59129 WRRS Discovery DY029 (GApr04)
1626897CTD or STD cast2015-04-25 12:28:0049.40947 N, 8.59128 WRRS Discovery DY029 (GApr04)
1626904CTD or STD cast2015-04-25 16:39:0049.40832 N, 8.58722 WRRS Discovery DY029 (GApr04)
1627422CTD or STD cast2015-04-26 06:14:0049.40817 N, 8.5873 WRRS Discovery DY029 (GApr04)
2118515Water sample data2015-04-26 06:57:3049.40816 N, 8.5873 WRRS Discovery DY029 (GApr04)
1626928CTD or STD cast2015-04-26 07:09:0049.40817 N, 8.5873 WRRS Discovery DY029 (GApr04)
1627495CTD or STD cast2015-04-28 07:19:0049.40592 N, 8.58083 WRRS Discovery DY029 (GApr04)
2118564Water sample data2015-04-28 08:33:3049.4059 N, 8.58084 WRRS Discovery DY029 (GApr04)
2137039Water sample data2015-04-28 08:33:3049.4059 N, 8.58084 WRRS Discovery DY029 (GApr04)
1626990CTD or STD cast2015-04-28 08:46:0049.4059 N, 8.58082 WRRS Discovery DY029 (GApr04)
1624934CTD or STD cast2015-05-21 07:25:0049.40722 N, 8.61802 WRRS Discovery DY030
2132508Water sample data2015-05-21 07:35:0049.40722 N, 8.61801 WRRS Discovery DY030
2137814Water sample data2015-05-21 07:35:0049.40722 N, 8.61801 WRRS Discovery DY030
1624946CTD or STD cast2015-05-21 09:36:0049.39706 N, 8.60355 WRRS Discovery DY030
1624958CTD or STD cast2015-05-21 14:41:0049.3982 N, 8.6154 WRRS Discovery DY030
2132521Water sample data2015-05-21 14:52:0049.3982 N, 8.61542 WRRS Discovery DY030
1624995CTD or STD cast2015-05-23 05:44:0049.40367 N, 8.60707 WRRS Discovery DY030
2132557Water sample data2015-05-23 05:57:0049.40368 N, 8.60707 WRRS Discovery DY030
2137851Water sample data2015-05-23 05:57:0049.40368 N, 8.60707 WRRS Discovery DY030
1624657CTD or STD cast2015-05-23 06:48:0049.40367 N, 8.60707 WRRS Discovery DY030
2123425Water sample data2015-05-23 07:00:0049.40368 N, 8.60707 WRRS Discovery DY030
1625009CTD or STD cast2015-05-23 08:30:0049.40167 N, 8.60582 WRRS Discovery DY030
2132569Water sample data2015-05-23 08:40:0049.40168 N, 8.6058 WRRS Discovery DY030
2118816Water sample data2015-07-12 12:17:0048.20599 N, 10.05369 WRRS Discovery DY033 (GApr04)
1625010CTD or STD cast2015-07-13 06:47:0049.43113 N, 8.59243 WRRS Discovery DY033 (GApr04)
2120206Water sample data2015-07-13 06:53:3049.43114 N, 8.59246 WRRS Discovery DY033 (GApr04)
2123437Water sample data2015-07-13 06:53:3049.43114 N, 8.59246 WRRS Discovery DY033 (GApr04)
1625532CTD or STD cast2015-07-13 10:10:0049.39735 N, 8.60045 WRRS Discovery DY033 (GApr04)
1625022CTD or STD cast2015-07-13 12:32:0049.39305 N, 8.60542 WRRS Discovery DY033 (GApr04)
2118644Water sample data2015-07-13 12:42:0049.39306 N, 8.60542 WRRS Discovery DY033 (GApr04)
2123449Water sample data2015-07-13 12:42:0049.39306 N, 8.60542 WRRS Discovery DY033 (GApr04)
2137863Water sample data2015-07-13 12:42:0049.39306 N, 8.60542 WRRS Discovery DY033 (GApr04)
1625034CTD or STD cast2015-07-13 19:23:0049.38547 N, 8.6257 WRRS Discovery DY033 (GApr04)
1625046CTD or STD cast2015-07-14 01:15:0049.38693 N, 8.63083 WRRS Discovery DY033 (GApr04)
2118656Water sample data2015-07-14 01:20:3049.38694 N, 8.63083 WRRS Discovery DY033 (GApr04)
2120218Water sample data2015-07-14 01:20:3049.38694 N, 8.63083 WRRS Discovery DY033 (GApr04)
2123450Water sample data2015-07-14 01:20:3049.38694 N, 8.63083 WRRS Discovery DY033 (GApr04)
2137875Water sample data2015-07-14 01:20:3049.38694 N, 8.63083 WRRS Discovery DY033 (GApr04)
2123462Water sample data2015-07-14 08:43:0049.42605 N, 8.54217 WRRS Discovery DY033 (GApr04)
1625058CTD or STD cast2015-07-14 08:59:0049.42668 N, 8.54137 WRRS Discovery DY033 (GApr04)
1625544CTD or STD cast2015-07-14 11:07:0049.3886 N, 8.63437 WRRS Discovery DY033 (GApr04)
2120396Water sample data2015-07-14 11:14:3049.3886 N, 8.63436 WRRS Discovery DY033 (GApr04)
2123818Water sample data2015-07-14 11:14:3049.3886 N, 8.63436 WRRS Discovery DY033 (GApr04)
1625071CTD or STD cast2015-07-14 12:39:0049.39083 N, 8.63085 WRRS Discovery DY033 (GApr04)
2123474Water sample data2015-07-14 12:48:0049.39083 N, 8.63085 WRRS Discovery DY033 (GApr04)
2137887Water sample data2015-07-14 12:48:0049.39083 N, 8.63085 WRRS Discovery DY033 (GApr04)
1625083CTD or STD cast2015-07-15 01:09:0049.37852 N, 8.61047 WRRS Discovery DY033 (GApr04)
2118668Water sample data2015-07-15 01:18:3049.37853 N, 8.61046 WRRS Discovery DY033 (GApr04)
2123486Water sample data2015-07-15 01:18:3049.37853 N, 8.61046 WRRS Discovery DY033 (GApr04)
2137899Water sample data2015-07-15 01:18:3049.37853 N, 8.61046 WRRS Discovery DY033 (GApr04)
2123831Water sample data2015-07-15 03:18:0049.37853 N, 8.61046 WRRS Discovery DY033 (GApr04)
1625556CTD or STD cast2015-07-15 03:20:0049.37852 N, 8.61045 WRRS Discovery DY033 (GApr04)
1625568CTD or STD cast2015-07-15 10:25:0049.3785 N, 8.61023 WRRS Discovery DY033 (GApr04)
2120403Water sample data2015-07-15 10:29:3049.3785 N, 8.61024 WRRS Discovery DY033 (GApr04)
2123843Water sample data2015-07-15 10:29:3049.3785 N, 8.61024 WRRS Discovery DY033 (GApr04)
1625095CTD or STD cast2015-07-15 11:22:0049.37852 N, 8.61025 WRRS Discovery DY033 (GApr04)
2120231Water sample data2015-07-15 11:34:0049.37851 N, 8.61025 WRRS Discovery DY033 (GApr04)
2123498Water sample data2015-07-15 11:34:0049.37851 N, 8.61025 WRRS Discovery DY033 (GApr04)
2137906Water sample data2015-07-15 11:34:0049.37851 N, 8.61025 WRRS Discovery DY033 (GApr04)
2138079Water sample data2015-07-16 16:40:0048.20589 N, 10.05259 WRRS Discovery DY033 (GApr04)
1625360CTD or STD cast2015-07-24 01:09:0049.36833 N, 8.62717 WRRS Discovery DY033 (GApr04)
2118736Water sample data2015-07-24 01:16:3049.36844 N, 8.62732 WRRS Discovery DY033 (GApr04)
2120335Water sample data2015-07-24 01:16:3049.36844 N, 8.62732 WRRS Discovery DY033 (GApr04)
2123695Water sample data2015-07-24 01:16:3049.36844 N, 8.62732 WRRS Discovery DY033 (GApr04)
2137979Water sample data2015-07-24 01:16:3049.36844 N, 8.62732 WRRS Discovery DY033 (GApr04)
1625372CTD or STD cast2015-07-24 11:19:0049.36832 N, 8.62633 WRRS Discovery DY033 (GApr04)
2123702Water sample data2015-07-24 11:31:0049.36832 N, 8.62635 WRRS Discovery DY033 (GApr04)
2137980Water sample data2015-07-24 11:31:0049.36832 N, 8.62635 WRRS Discovery DY033 (GApr04)
1625789CTD or STD cast2015-07-25 03:26:0049.36683 N, 8.62633 WRRS Discovery DY033 (GApr04)
2118933Water sample data2015-07-25 03:34:0049.36691 N, 8.62643 WRRS Discovery DY033 (GApr04)
2124035Water sample data2015-07-25 03:34:0049.36691 N, 8.62643 WRRS Discovery DY033 (GApr04)
2137408Water sample data2015-07-25 03:34:0049.36691 N, 8.62643 WRRS Discovery DY033 (GApr04)
2124047Water sample data2015-07-25 05:42:3049.36693 N, 8.62637 WRRS Discovery DY033 (GApr04)
1625790CTD or STD cast2015-07-25 05:47:0049.36683 N, 8.62633 WRRS Discovery DY033 (GApr04)
1625808CTD or STD cast2015-07-25 08:50:0049.43167 N, 8.59917 WRRS Discovery DY033 (GApr04)
1625384CTD or STD cast2015-07-25 22:31:0049.41532 N, 8.59587 WRRS Discovery DY033 (GApr04)
1625415CTD or STD cast2015-07-27 21:28:0049.4178 N, 8.58487 WRRS Discovery DY033 (GApr04)
1625440CTD or STD cast2015-07-29 01:32:0049.42133 N, 8.57583 WRRS Discovery DY033 (GApr04)
2118797Water sample data2015-07-29 01:42:3049.4248 N, 8.57584 WRRS Discovery DY033 (GApr04)
2120360Water sample data2015-07-29 01:42:3049.4248 N, 8.57584 WRRS Discovery DY033 (GApr04)
2123763Water sample data2015-07-29 01:42:3049.4248 N, 8.57584 WRRS Discovery DY033 (GApr04)
2138043Water sample data2015-07-29 01:42:3049.4248 N, 8.57584 WRRS Discovery DY033 (GApr04)
1625857CTD or STD cast2015-07-29 02:56:0049.42467 N, 8.57583 WRRS Discovery DY033 (GApr04)
2120519Water sample data2015-07-29 03:02:3049.42481 N, 8.57584 WRRS Discovery DY033 (GApr04)
2124084Water sample data2015-07-29 03:02:3049.42481 N, 8.57584 WRRS Discovery DY033 (GApr04)
1625452CTD or STD cast2015-07-29 04:14:0049.42467 N, 8.57583 WRRS Discovery DY033 (GApr04)
2123775Water sample data2015-07-29 04:58:3049.42481 N, 8.57584 WRRS Discovery DY033 (GApr04)
1625464CTD or STD cast2015-07-29 08:28:0049.39017 N, 8.60002 WRRS Discovery DY033 (GApr04)
1625476CTD or STD cast2015-07-29 16:11:0049.39407 N, 8.48867 WRRS Discovery DY033 (GApr04)
1625488CTD or STD cast2015-07-29 18:11:0049.42523 N, 8.57013 WRRS Discovery DY033 (GApr04)
2123787Water sample data2015-07-29 19:23:3049.42522 N, 8.57014 WRRS Discovery DY033 (GApr04)
1625507CTD or STD cast2015-07-30 02:21:0049.4095 N, 8.57333 WRRS Discovery DY033 (GApr04)
2118804Water sample data2015-07-30 02:33:3049.40963 N, 8.57345 WRRS Discovery DY033 (GApr04)
2120372Water sample data2015-07-30 02:33:3049.40963 N, 8.57345 WRRS Discovery DY033 (GApr04)
2123799Water sample data2015-07-30 02:33:3049.40963 N, 8.57345 WRRS Discovery DY033 (GApr04)
2138055Water sample data2015-07-30 02:33:3049.40963 N, 8.57345 WRRS Discovery DY033 (GApr04)
1625869CTD or STD cast2015-07-30 03:36:0049.4095 N, 8.57333 WRRS Discovery DY033 (GApr04)
2120520Water sample data2015-07-30 03:45:3049.40962 N, 8.57347 WRRS Discovery DY033 (GApr04)
2124096Water sample data2015-07-30 03:45:3049.40962 N, 8.57347 WRRS Discovery DY033 (GApr04)
1625519CTD or STD cast2015-07-30 10:06:0049.40617 N, 8.53467 WRRS Discovery DY033 (GApr04)
2120384Water sample data2015-07-30 10:15:3049.40621 N, 8.53476 WRRS Discovery DY033 (GApr04)
2123806Water sample data2015-07-30 10:15:3049.40621 N, 8.53476 WRRS Discovery DY033 (GApr04)
2138067Water sample data2015-07-30 10:15:3049.40621 N, 8.53476 WRRS Discovery DY033 (GApr04)
1625870CTD or STD cast2015-07-31 05:17:0049.41217 N, 8.57417 WRRS Discovery DY033 (GApr04)
2124103Water sample data2015-07-31 05:23:0049.41229 N, 8.57431 WRRS Discovery DY033 (GApr04)
1625882CTD or STD cast2015-07-31 08:16:0049.41483 N, 8.56517 WRRS Discovery DY033 (GApr04)
2124115Water sample data2015-07-31 08:23:3049.41466 N, 8.56482 WRRS Discovery DY033 (GApr04)
1625894CTD or STD cast2015-07-31 11:21:0049.39583 N, 8.59762 WRRS Discovery DY033 (GApr04)
2120532Water sample data2015-07-31 11:31:0049.39583 N, 8.59761 WRRS Discovery DY033 (GApr04)
2124127Water sample data2015-07-31 11:31:0049.39583 N, 8.59761 WRRS Discovery DY033 (GApr04)
1625901CTD or STD cast2015-07-31 12:36:0049.38007 N, 8.63618 WRRS Discovery DY033 (GApr04)
2124139Water sample data2015-07-31 14:15:0049.39543 N, 8.59819 WRRS Discovery DY033 (GApr04)
1625925CTD or STD cast2015-07-31 14:51:0049.39542 N, 8.59818 WRRS Discovery DY033 (GApr04)
1625937CTD or STD cast2015-07-31 17:40:0049.3969 N, 8.5913 WRRS Discovery DY033 (GApr04)
2124140Water sample data2015-07-31 17:44:3049.39689 N, 8.59129 WRRS Discovery DY033 (GApr04)
1625949CTD or STD cast2015-07-31 20:37:0049.39773 N, 8.59068 WRRS Discovery DY033 (GApr04)
2124152Water sample data2015-07-31 20:44:3049.39742 N, 8.59099 WRRS Discovery DY033 (GApr04)
1625950CTD or STD cast2015-07-31 23:56:0049.39533 N, 8.59167 WRRS Discovery DY033 (GApr04)
2124164Water sample data2015-08-01 00:07:3049.39547 N, 8.59176 WRRS Discovery DY033 (GApr04)
1625962CTD or STD cast2015-08-01 02:25:0049.39683 N, 8.58467 WRRS Discovery DY033 (GApr04)
2124176Water sample data2015-08-01 02:33:0049.3968 N, 8.58478 WRRS Discovery DY033 (GApr04)
1625974CTD or STD cast2015-08-01 05:13:0049.397 N, 8.58767 WRRS Discovery DY033 (GApr04)
2124188Water sample data2015-08-01 05:21:3049.39712 N, 8.58774 WRRS Discovery DY033 (GApr04)
1625520CTD or STD cast2015-08-01 07:22:0049.38033 N, 8.58767 WRRS Discovery DY033 (GApr04)
1721440CTD or STD cast2015-08-22 16:25:0049.39497 N, 8.58778 WRRS Discovery DY034
1721612CTD or STD cast2015-08-22 18:24:0049.40667 N, 8.6 WRRS Discovery DY034
2119740Water sample data2015-08-22 18:40:0049.40588 N, 8.59964 WRRS Discovery DY034
1721452CTD or STD cast2015-08-23 11:28:0049.40695 N, 8.59805 WRRS Discovery DY034
2122305Water sample data2015-08-23 11:42:3049.40696 N, 8.59806 WRRS Discovery DY034
1721464CTD or STD cast2015-08-23 18:15:0049.39783 N, 8.59952 WRRS Discovery DY034