Search the data

Metadata Report for BODC Series Reference Number 2127186


Metadata Summary

Data Description

Data Category Water sample data
Instrument Type
NameCategories
Teflon-coated Niskin bottle  discrete water samplers
SPX Bran+Luebbe colorimetric Autoanalyser 3  colorimeters; autoanalysers
Instrument Mounting lowered unmanned submersible
Originating Country United Kingdom
Originator Mr Malcolm Woodward
Originating Organization Plymouth Marine Laboratory
Processing Status banked
Online delivery of data Download available - Ocean Data View (ODV) format
Project(s) Shelf Sea Biogeochemistry (SSB)
 

Data Identifiers

Originator's Identifier DY018_UCCTD_NUTS_62:261
BODC Series Reference 2127186
 

Time Co-ordinates(UT)

Start Time (yyyy-mm-dd hh:mm) 2014-12-01 06:50
End Time (yyyy-mm-dd hh:mm) -
Nominal Cycle Interval -
 

Spatial Co-ordinates

Latitude 50.03414 N ( 50° 2.0' N )
Longitude 4.37065 W ( 4° 22.2' W )
Positional Uncertainty 0.0 to 0.01 n.miles
Minimum Sensor or Sampling Depth 25.5 m
Maximum Sensor or Sampling Depth 67.5 m
Minimum Sensor or Sampling Height 1.1 m
Maximum Sensor or Sampling Height 43.1 m
Sea Floor Depth 68.6 m
Sea Floor Depth Source BUDS
Sensor or Sampling Distribution Unspecified -
Sensor or Sampling Depth Datum Unspecified -
Sea Floor Depth Datum Unspecified -
 

Parameters

BODC CODERankUnitsTitle
ADEPZZ011MetresDepth (spatial coordinate) relative to water surface in the water body
AMONAATX1Micromoles per litreConcentration of ammonium {NH4+ CAS 14798-03-9} per unit volume of the water body [dissolved plus reactive particulate phase] by colorimetric autoanalysis
BOTTFLAG1Not applicableSampling process quality flag (BODC C22)
FIRSEQID1DimensionlessBottle firing sequence number
NTRIAATX1Micromoles per litreConcentration of nitrite {NO2- CAS 14797-65-0} per unit volume of the water body [dissolved plus reactive particulate phase] by colorimetric autoanalysis
NTRZAATX1Micromoles per litreConcentration of nitrate+nitrite {NO3+NO2} per unit volume of the water body [dissolved plus reactive particulate phase] by colorimetric autoanalysis
PHOSAATX1Micromoles per litreConcentration of phosphate {PO43- CAS 14265-44-2} per unit volume of the water body [dissolved plus reactive particulate phase] by colorimetric autoanalysis
ROSPOSID1DimensionlessBottle rosette position identifier
SAMPRFNM1DimensionlessSample reference number
SLCAAATX1Micromoles per litreConcentration of silicate {SiO44- CAS 17181-37-2} per unit volume of the water body [dissolved plus reactive particulate phase] by colorimetric autoanalysis

Definition of BOTTFLAG

BOTTFLAGDefinition
0The sampling event occurred without any incident being reported to BODC.
1The filter in an in-situ sampling pump physically ruptured during sample resulting in an unquantifiable loss of sampled material.
2Analytical evidence (e.g. surface water salinity measured on a sample collected at depth) indicates that the water sample has been contaminated by water from depths other than the depths of sampling.
3The feedback indicator on the deck unit reported that the bottle closure command had failed. General Oceanics deck units used on NERC vessels in the 80s and 90s were renowned for reporting misfires when the bottle had been closed. This flag is also suitable for when a trigger command is mistakenly sent to a bottle that has previously been fired.
4During the sampling deployment the bottle was fired in an order other than incrementing rosette position. Indicative of the potential for errors in the assignment of bottle firing depth, especially with General Oceanics rosettes.
5Water was reported to be escaping from the bottle as the rosette was being recovered.
6The bottle seals were observed to be incorrectly seated and the bottle was only part full of water on recovery.
7Either the bottle was found to contain no sample on recovery or there was no bottle fitted to the rosette position fired (but SBE35 record may exist).
8There is reason to doubt the accuracy of the sampling depth associated with the sample.
9The bottle air vent had not been closed prior to deployment giving rise to a risk of sample contamination through leakage.

Definition of Rank

  • Rank 1 is a one-dimensional parameter
  • Rank 2 is a two-dimensional parameter
  • Rank 0 is a one-dimensional parameter describing the second dimension of a two-dimensional parameter (e.g. bin depths for moored ADCP data)

Problem Reports

No Problem Report Found in the Database


Data Access Policy

Open Data supplied by Natural Environment Research Council (NERC)

You must always use the following attribution statement to acknowledge the source of the information: "Contains data supplied by Natural Environment Research Council."


Narrative Documents

SPX Bran+Luebbe Autoanalyser 3

The instrument uses continuous flow analysis (CFA) with a continuous stream of material divided by air bubbles into discrete segments in which chemical reactions occur. The continuous stream of liquid samples and reagents are combined and transported in tubing and mixing coils. The tubing passes the samples from one apparatus to the other with each apparatus performing different functions, such as distillation, dialysis, extraction, ion exchange, heating, incubation, and subsequent recording of a signal.

An essential principle of the system is the introduction of air bubbles. The air bubbles segment each sample into discrete packets and act as a barrier between packets to prevent cross contamination as they travel down the length of the tubing. The air bubbles also assist mixing by creating turbulent flow (bolus flow), and provide operators with a quick and easy check of the flow characteristics of the liquid.

Samples and standards are treated in an exactly identical manner as they travel the length of the tubing, eliminating the necessity of a steady state signal, however, since the presence of bubbles create an almost square wave profile, bringing the system to steady state does not significantly decrease throughput and is desirable in that steady state signals (chemical equilibrium) are more accurate and reproducible.

The autoanalyzer can consist of different modules including a sampler, pump, mixing coils, optional sample treatments (dialysis, distillation, heating, etc), a detector, and data generator. Most continuous flow analyzers depend on color reactions using a flow through colorimeter, however other methods have been developed that use ISE, flame photometry, ICAP, fluorometry, and so forth.

More details can be found in the manufacturer's introduction to autoanalysers andinstrument description.

Niskin Bottle

The Niskin bottle is a device used by oceanographers to collect subsurface seawater samples. It is a plastic bottle with caps and rubber seals at each end and is deployed with the caps held open, allowing free-flushing of the bottle as it moves through the water column.

Standard Niskin

The standard version of the bottle includes a plastic-coated metal spring or elastic cord running through the interior of the bottle that joins the two caps, and the caps are held open against the spring by plastic lanyards. When the bottle reaches the desired depth the lanyards are released by a pressure-actuated switch, command signal or messenger weight and the caps are forced shut and sealed, trapping the seawater sample.

Lever Action Niskin

The Lever Action Niskin Bottle differs from the standard version, in that the caps are held open during deployment by externally mounted stainless steel springs rather than an internal spring or cord. Lever Action Niskins are recommended for applications where a completely clear sample chamber is critical or for use in deep cold water.

Clean Sampling

A modified version of the standard Niskin bottle has been developed for clean sampling. This is teflon-coated and uses a latex cord to close the caps rather than a metal spring. The clean version of the Levered Action Niskin bottle is also teflon-coated and uses epoxy covered springs in place of the stainless steel springs. These bottles are specifically designed to minimise metal contamination when sampling trace metals.

Deployment

Bottles may be deployed singly clamped to a wire or in groups of up to 48 on a rosette. Standard bottles and Lever Action bottles have a capacity between 1.7 and 30 L. Reversing thermometers may be attached to a spring-loaded disk that rotates through 180° on bottle closure.

Discrete inorganic nutrient samples from CTD bottles during RRS Discovery cruise DY018

Originator's Protocol for Data Acquisition and Analysis

Sampling strategy

Discrete samples were collected from 46 CTD casts. Twenty-one casts were carried out with a stainless steel CTD package, fitted with a Sea-Bird SBE 911plus CTD and deck unit (s/n 09P-46253-0869 and 11P-34173-0676 respectively), Sea-Bird SBE 32, twenty-four way carousel (s/n 32-19817-0243) and 24 x 20 L Ocean Test Equipment (OTE) niskin bottles. Twenty-five casts were carried out with a titanium CTD package, fitted with a Sea-Bird SBE 911plus CTD and deck unit (s/n 09P-77801-1182 (Ti) and 11P-34173-0676 respectively), Sea-Bird SBE 32, twenty-four way carousel (s/n 32-60380-0805 (Ti)) and 24 x 10 L Ocean Test Equipment (OTE) niskin bottles. Samples were withdrawn from 6 to 24 depths, generally spanning the entire water column. The water sample was transferred from the CTD to 60 ml HDPE Nalgene bottles (acid washed and cleaned) using silicone tubing, with the sample bottle being washed three times before the final sample was taken. This sample was then immediately taken to the laboratory and analysed as soon as possible after the sample was collected. Gloves and other clean handling protocols were adopted following the GO-SHIP protocols. When immediate analysis was not possible samples were stored in the dark, in a fridge, and brought back to room temperature prior to analysis.

Sample Analysis

The inorganic nutrient samples were analysed using a 5 channel (nitrate, nitrite, phosphate, silicate and ammonium) Bran and Luebbe AAIII segmented flow, colorimetric, autoanalyser. The data were calibrated against home nutrient standards and then compared against Certified Nutrient Reference Materials, from KANSO Technos, Japan.

The analytical chemical methodologies used were according to Brewer and Riley (1965) for nitrate, Grasshoff (1976) for nitrite, Kirkwood (1989) for phosphate and silicate, and Mantoura and Woodward (1983) for ammonium. The detection limits were 0.01 µ mol l-1 (nitrite), 0.02 µ mol l-1 (nitrate+nitrite), 0.03 µ mol l-1 (ammonium) and 0.02 µ mol l-1 (phosphate). There was no limit for silicate.

References

Kirkwood D., 1989. Simultaneous determination of selected nutrients in seawater. ICES CM 1989/C:29.

Brewer and Riley, 1965. The automatic determination of nitrate in sea water. Deep Sea Research, 12, 765-72.

Grasshoff K., 1976. Methods of seawater analysis. Verlag Chemie, Weiheim and New York, 317pp.

Mantoura R.F.C and Woodward E.M.S, 1983. Optimization of the indophenol blue method for the automated determination of ammonia in estuarine waters. Estuarine Coastal and Shelf Science, 17, 219-24.

BODC Data Processing Procedures

The data arrived at BODC in one Excel (.xlsx) file containing discrete samples collected from the DY018 CTD deployments. Data received were loaded into the BODC database using established BODC data banking procedures. All data were then loaded into BODC's database without any further changes. Originator's variables were mapped to appropriate BODC parameter codes as follows:

Originator's Parameter Originator's Unit Description BODC Parameter Code BODC Unit
Nitrite µmol l-1 Concentration of nitrite {NO2} NTRIAATX µmol l-1
Nitrate+Nit µmol l-1 Concentration of nitrate+nitrite {NO3+NO2} NTRZAATX µmol l-1
Ammonium µmol l-1 Concentration of ammonium {NH4+} AMONAATX µmol l-1
Silicate µmol l-1 Concentration of silicate {SiO44-} SLCAAATX µmol l-1
Phosphate µmol l-1 Concentration of phosphate {PO43-} PHOSAATX µmol l-1

Data Quality Report

None. (BODC assessment)

Problem Report

None. (BODC assessment)


Project Information

Shelf Sea Biogeochemistry (SSB) Programme

Shelf Sea Biogeochemistry (SSB) is a £10.5 million, six-year (2011-2017) research programme, jointly funded by the Natural Environment Research Council (NERC) and the Department for Environment, Food and Rural Affairs (DEFRA). The aim of the research is to reduce the uncertainty in our understanding of nutrient and carbon cycling within the shelf seas, and of their role in global biogeochemical cycles. SSB will also provide effective policy advice and make a significant contribution to the Living with Environmental Change programme.

Background

The Shelf Sea Biogeochemistry research programme directly relates to the delivery of the NERC Earth system science theme and aims to provide evidence that supports a number of marine policy areas and statutory requirements, such as the Marine Strategy Framework Directive and Marine and Climate Acts.

The shelf seas are highly productive compared to the open ocean, a productivity that underpins more than 90 per cent of global fisheries. Their importance to society extends beyond food production to include issues of biodiversity, carbon cycling and storage, waste disposal, nutrient cycling, recreation and renewable energy resources.

The shelf seas have been estimated to be the most valuable biome on Earth, but they are under considerable stress, as a result of anthropogenic nutrient loading, overfishing, habitat disturbance, climate change and other impacts.

However, even within the relatively well-studied European shelf seas, fundamental biogeochemical processes are poorly understood. For example: the role of shelf seas in carbon storage; in the global cycles of key nutrients (nitrogen, phosphorus, silicon and iron); and in determining primary and secondary production, and thereby underpinning the future delivery of many other ecosystem services.

Improved knowledge of such factors is not only required by marine policymakers; it also has the potential to increase the quality and cost-effectiveness of management decisions at the local, national and international levels under conditions of climate change.

The Shelf Sea Biogeochemistry research programme will take a holistic approach to the cycling of nutrients and carbon and the controls on primary and secondary production in UK and European shelf seas, to increase understanding of these processes and their role in wider biogeochemical cycles. It will thereby significantly improve predictive marine biogeochemical and ecosystem models over a range of scales.

The scope of the programme includes exchanges with the open ocean (transport on and off the shelf to a depth of around 500m), together with cycling, storage and release processes on the shelf slope, and air-sea exchange of greenhouse gases (carbon dioxide and nitrous oxide).

Further details are available on the SSB website.

Participants

15 different organisations are directly involved in research for SSB. These institutions are

  • Centre for Environment, Fisheries and Aquaculture Science (Cefas)
  • Meteorological Office
  • National Oceanography Centre (NOC)
  • Plymouth Marine Laboratory (PML)
  • Scottish Association for Marine Science (SAMS) / Scottish Marine Institute (SMI)
  • University of Aberdeen
  • University of Bangor
  • University of East Anglia (UEA)
  • University of Edinburgh
  • University of Essex
  • University of Liverpool
  • University of Oxford
  • Plymouth University
  • University of Portsmouth
  • University of Southampton

In addition, there are third party institutions carrying out sampling work for SSB, but who are not involved in the programme itself. These are:

  • The Agri-Food and Biosciences Institute (AFBI)
  • Irish Marine Institute (MI)
  • Marine Science Scotland (MSS)

Research details

Overall, five Work Packages have been funded by the SSB programme. These are described in brief below:

  • Work Package 1: Carbon and Nutrient Dynamics and Fluxes over Shelf Systems (CaNDyFloSS).
    This work package aims to perform a comprehensive study of the cycling of nutrients and carbon throughout the water column over the whole north-west European shelf. This will allow the fluxes of nutrients and carbon between the shelf and the deep ocean and atmosphere to be quantified, establishing the role of the north-west European continental shelf in the global carbon cycle.

  • Work Package 2: Biogeochemistry, macronutrient and carbon cycling in the benthic layer.
    This work package aims are to map the sensitivity and status of seabed habitats, based on physical conditions, ecological community structure and the size and dynamics of the nitrogen and carbon pools found there. This information will be used, in conjunction with some laboratory-based work, to generate an understanding of the potential impacts on the benthic community as a result of changing environmental conditions, such as rising CO2 levels.

  • Work Package 3: The supply of iron from shelf sediments to the ocean.
    The research for this work package addresses the question of how currents, tides, weather and marine chemistry allow new iron to be transported away from the shallow shelf waters around the United Kingdom (UK), to the nearby open ocean. This will ultimately allow an improved understanding of how the transport of iron in shelf waters and shelf sediments influences phytoplankton growth in open oceans. This in turn improves the understanding of carbon dioxide uptake by phytoplankton.

  • Work Package 4: Integrative modelling for Shelf Seas Biogeochemistry.
    The aim of this work package is the development of a new shelf seas biogeochemical model system, coupled to a state of the art physical model, that is capable of predicting regional impacts of environmental change of timescales from days to decades. It is envisaged that the combination of predictive tools and new knowledge developed in this work package will underpin development and implementation of marine policy and marine forecasting systems.

  • Work Package 5: Data synthesis and management of marine and coastal carbon (DSMMAC).
    This work package is funded by Defra and is also known by the name 'Blue Carbon'. The aim is to provide a process-based, quantitative assessment of the role of UK coastal waters and shelf seas in carbon storage and release, using existing data and understanding, and also emerging results from SSB fieldwork, experiments and modelling. Particular emphasis will be given to processes that may be influenced by human activities, and hence the opportunity for management interventions to enhance carbon sequestration.

Fieldwork and data collection

The campaign consists of the core cruises in the table below, to the marine shelf (and shelf-edge) of the Celtic Sea on board the NERC research vessels RRS Discovery and RRS James Cook. These cruises will focus on the physics and biogeochemistry of the benthic and pelagic zones of the water column, primarily around four main sampling sites in this area.

Cruise identifier Research ship Cruise dates Work packages
DY008 RRS Discovery March 2014 WP 2 and WP 3
JC105 RRS James Cook June 2014 WP 1, WP 2 and WP 3
DY026 RRS Discovery August 2014 WP1, WP 2 and WP 3
DY018 RRS Discovery November - December 2014 WP 1 and WP 3
DY021 (also known as DY008b) RRS Discovery March 2015 WP 2 and WP 3
DY029 RRS Discovery April 2015 WP 1 and WP 3
DY030 RRS Discovery May 2015 WP 2 and WP 3
DY033 RRS Discovery July 2015 WP 1 and WP 3
DY034 RRS Discovery August 2015 WP 2 and WP 3

Core cruises will be supplemented by partner cruises led by Cefas, MI, MSS, Bangor University and AFBI, spanning the shelf seas and shelf-edges around United Kingdom and Republic of Ireland.

Activities will include coring, Conductivity Temperature and Depth (CTD) deployments, Acoustic Doppler Current Profilers (ADCP) surveys, moorings and wire-walker deployments, benthic lander observatories, autonomous gliders and submersible surveys, Marine Snow Catcher particulate matter analysis, plankton net hauls, in-situ sediment flume investigations and laboratory incubations with core and sea water samples.


Data Activity or Cruise Information

Data Activity

Start Date (yyyy-mm-dd) 2014-12-01
End Date (yyyy-mm-dd) 2014-12-01
Organization Undertaking ActivityUniversity of Liverpool Department of Earth, Ocean and Ecological Sciences
Country of OrganizationUnited Kingdom
Originator's Data Activity IdentifierDY018_UCCTD_261
Platform Categorylowered unmanned submersible

No Document Information Held for the Series

Related Data Activity activities are detailed in Appendix 1

Cruise

Cruise Name DY018 (GApr04)
Departure Date 2014-11-09
Arrival Date 2014-12-02
Principal Scientist(s)Jonathan Sharples (University of Liverpool Department of Earth, Ocean and Ecological Sciences)
Ship RRS Discovery

Complete Cruise Metadata Report is available here


Fixed Station Information

Fixed Station Information

Station NameWestern Channel Observatory E1
CategoryCoastal location
Latitude50° 2.00' N
Longitude4° 22.00' W
Water depth below MSL75.0 m

Western Channel Observatory station E1

The Western Channel Observatory (WCO) is situated in the Western English Channel and comprises of sustained long-term observations at a number of stations.

Station E1 is located south-west of Plymouth at 50°2.00'N, 4°22.00'W.

More information can be found on the Western Channel Observatory website.

Related Fixed Station activities are detailed in Appendix 2


BODC Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
Blank Unqualified
< Below detection limit
> In excess of quoted value
A Taxonomic flag for affinis (aff.)
B Beginning of CTD Down/Up Cast
C Taxonomic flag for confer (cf.)
D Thermometric depth
E End of CTD Down/Up Cast
G Non-taxonomic biological characteristic uncertainty
H Extrapolated value
I Taxonomic flag for single species (sp.)
K Improbable value - unknown quality control source
L Improbable value - originator's quality control
M Improbable value - BODC quality control
N Null value
O Improbable value - user quality control
P Trace/calm
Q Indeterminate
R Replacement value
S Estimated value
T Interpolated value
U Uncalibrated
W Control value
X Excessive difference

SeaDataNet Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
0 no quality control
1 good value
2 probably good value
3 probably bad value
4 bad value
5 changed value
6 value below detection
7 value in excess
8 interpolated value
9 missing value
A value phenomenon uncertain
B nominal value
Q value below limit of quantification

Appendix 1: DY018_UCCTD_261

Related series for this Data Activity are presented in the table below. Further information can be found by following the appropriate links.

If you are interested in these series, please be aware we offer a multiple file download service. Should your credentials be insufficient for automatic download, the service also offers a referral to our Enquiries Officer who may be able to negotiate access.

Series IdentifierData CategoryStart date/timeStart positionCruise
2118029Water sample data2014-12-01 06:50:0050.03414 N, 4.37065 WRRS Discovery DY018 (GApr04)
2120199Water sample data2014-12-01 06:50:0050.03414 N, 4.37065 WRRS Discovery DY018 (GApr04)
2121639Water sample data2014-12-01 06:50:0050.03414 N, 4.37065 WRRS Discovery DY018 (GApr04)
2137709Water sample data2014-12-01 06:50:0050.03414 N, 4.37065 WRRS Discovery DY018 (GApr04)

Appendix 2: Western Channel Observatory E1

Related series for this Fixed Station are presented in the table below. Further information can be found by following the appropriate links.

If you are interested in these series, please be aware we offer a multiple file download service. Should your credentials be insufficient for automatic download, the service also offers a referral to our Enquiries Officer who may be able to negotiate access.

Series IdentifierData CategoryStart date/timeStart positionCruise
1087479CTD or STD cast2002-05-16 21:15:0050.033 N, 4.367 WRV Squilla SQ020516
1086882CTD or STD cast2002-06-26 11:06:0050.033 N, 4.367 WUnknown research vessel PML020626
1086894CTD or STD cast2002-07-17 10:25:0050.033 N, 4.367 WUnknown research vessel PML020717
1086901CTD or STD cast2002-08-14 10:55:0050.033 N, 4.367 WUnknown research vessel PML020814
1086913CTD or STD cast2002-10-02 10:50:0050.033 N, 4.367 WUnknown research vessel PML021002
1086925CTD or STD cast2002-10-31 12:05:0050.033 N, 4.367 WUnknown research vessel PML021031
1086937CTD or STD cast2002-12-13 12:14:0050.033 N, 4.367 WUnknown research vessel PML021213
1086949CTD or STD cast2003-01-24 12:44:0050.033 N, 4.367 WUnknown research vessel PML030124
1086950CTD or STD cast2003-02-13 06:10:0050.033 N, 4.367 WUnknown research vessel PML030213
1086962CTD or STD cast2003-03-21 12:32:0050.033 N, 4.367 WUnknown research vessel PML030321
1086974CTD or STD cast2003-04-23 11:22:0050.033 N, 4.367 WUnknown research vessel PML030423
1086986CTD or STD cast2003-05-14 10:56:0050.033 N, 4.367 WUnknown research vessel PML030514
1086998CTD or STD cast2003-06-04 11:00:0050.033 N, 4.367 WUnknown research vessel PML030604
1087001CTD or STD cast2003-06-11 11:43:0050.033 N, 4.367 WUnknown research vessel PML030611
1087013CTD or STD cast2003-06-18 10:50:0050.033 N, 4.367 WUnknown research vessel PML030618
1087025CTD or STD cast2003-06-25 10:20:0050.033 N, 4.367 WUnknown research vessel PML030625
1087037CTD or STD cast2003-07-02 10:49:0050.033 N, 4.367 WUnknown research vessel PML030702
1087049CTD or STD cast2003-07-09 11:20:0050.033 N, 4.367 WUnknown research vessel PML030709
1087050CTD or STD cast2003-08-06 10:41:0050.033 N, 4.367 WUnknown research vessel PML030806
1087062CTD or STD cast2003-09-09 10:32:0050.033 N, 4.367 WUnknown research vessel PML030909
1087074CTD or STD cast2004-08-03 11:07:0050.033 N, 4.367 WUnknown research vessel PML040803
1087086CTD or STD cast2004-08-26 09:36:0050.033 N, 4.367 WUnknown research vessel PML040826
1087098CTD or STD cast2004-11-02 11:10:0050.033 N, 4.367 WUnknown research vessel PML041102
1087105CTD or STD cast2004-12-08 11:31:0050.033 N, 4.367 WUnknown research vessel PML041208
1084771CTD or STD cast2005-02-02 11:35:0050.033 N, 4.367 WUnknown research vessel PML050202
1084783CTD or STD cast2005-03-08 11:06:0050.033 N, 4.367 WUnknown research vessel PML050308
1084795CTD or STD cast2005-03-30 10:16:0050.033 N, 4.367 WUnknown research vessel PML050330
1084802CTD or STD cast2005-05-11 10:25:0050.033 N, 4.367 WUnknown research vessel PML050511
1084814CTD or STD cast2005-06-08 10:56:0050.033 N, 4.367 WUnknown research vessel PML050608
1084826CTD or STD cast2005-06-20 09:07:0050.033 N, 4.367 WUnknown research vessel PML050620
1084838CTD or STD cast2005-07-13 10:32:0050.033 N, 4.367 WUnknown research vessel PML050713
1084851CTD or STD cast2005-08-10 10:39:0050.033 N, 4.367 WUnknown research vessel PML050810
1084863CTD or STD cast2005-08-31 10:37:0050.033 N, 4.367 WUnknown research vessel PML050831
1084875CTD or STD cast2005-09-14 10:07:0050.033 N, 4.367 WUnknown research vessel PML050914
1084887CTD or STD cast2005-09-28 10:36:0050.033 N, 4.367 WUnknown research vessel PML050928
1084899CTD or STD cast2005-11-18 11:14:0050.033 N, 4.367 WUnknown research vessel PML051118
1084906CTD or STD cast2006-01-18 10:56:0050.033 N, 4.367 WUnknown research vessel PML060118
1084918CTD or STD cast2006-02-08 11:56:0050.033 N, 4.367 WUnknown research vessel PML060208
1084931CTD or STD cast2006-03-01 11:14:0050.033 N, 4.367 WUnknown research vessel PML060301
1084943CTD or STD cast2006-03-15 11:02:0050.033 N, 4.367 WUnknown research vessel PML060315
1084955CTD or STD cast2006-10-10 07:45:0050.033 N, 4.367 WUnknown research vessel PML061010
1084967CTD or STD cast2006-11-01 11:25:0050.033 N, 4.367 WUnknown research vessel PML061101
1084979CTD or STD cast2007-02-06 11:12:0050.033 N, 4.367 WUnknown research vessel PML070206
1084980CTD or STD cast2007-03-13 10:43:0050.033 N, 4.367 WUnknown research vessel PML070313
910772CTD or STD cast2007-04-17 10:30:0050.033 N, 4.367 WRV Plymouth Quest PQ070417
910784CTD or STD cast2007-05-01 10:30:0050.033 N, 4.367 WRV Plymouth Quest PQ070501
910796CTD or STD cast2007-06-05 10:07:0050.033 N, 4.367 WRV Plymouth Quest PQ070605
910803CTD or STD cast2007-07-03 10:30:0050.033 N, 4.367 WRV Plymouth Quest PQ070703
910815CTD or STD cast2007-07-31 08:22:0050.033 N, 4.367 WRV Plymouth Quest PQ070731
910827CTD or STD cast2007-09-11 09:06:0050.033 N, 4.372 WRV MBA Sepia MS070911
910839CTD or STD cast2007-11-01 09:16:0050.034 N, 4.361 WRV MBA Sepia MS071101
910840CTD or STD cast2008-04-15 10:30:0050.033 N, 4.369 WRV Plymouth Quest PQ080415
910852CTD or STD cast2008-04-29 10:30:0050.033 N, 4.367 WRV Plymouth Quest PQ080429
910864CTD or STD cast2008-05-13 10:30:0050.033 N, 4.367 WRV Plymouth Quest PQ080513
910876CTD or STD cast2008-05-20 10:30:0050.033 N, 4.367 WRV Plymouth Quest PQ080520
910888CTD or STD cast2008-06-03 10:14:0050.033 N, 4.367 WRV Plymouth Quest PQ080603
910907CTD or STD cast2008-06-17 10:26:0050.034 N, 4.367 WRV Plymouth Quest PQ080617
910919CTD or STD cast2008-07-15 10:30:0050.033 N, 4.367 WRV Plymouth Quest PQ080715
910920CTD or STD cast2008-08-22 10:30:0050.033 N, 4.367 WRV Plymouth Quest PQ080822
910932CTD or STD cast2008-09-16 10:30:0050.033 N, 4.367 WRV Plymouth Quest PQ080916
910944CTD or STD cast2008-10-08 10:43:0050.034 N, 4.364 WRV Plymouth Quest PQ081008
910956CTD or STD cast2008-10-22 10:47:0050.036 N, 4.366 WRV Plymouth Quest PQ081022
910968CTD or STD cast2008-11-04 10:52:0050.034 N, 4.37 WRV Plymouth Quest PQ081104
910981CTD or STD cast2008-12-11 10:30:0050.033 N, 4.367 WRV Plymouth Quest PQ081211
910993CTD or STD cast2009-01-07 10:30:0050.033 N, 4.367 WRV Plymouth Quest PQ090107
911738CTD or STD cast2009-01-27 11:31:0050.033 N, 4.368 WRV Plymouth Quest PQ090127
911751CTD or STD cast2009-02-11 10:23:0050.038 N, 4.37 WRV Plymouth Quest PQ090211
911763CTD or STD cast2009-02-26 10:30:0050.033 N, 4.367 WRV Plymouth Quest PQ090226
911775CTD or STD cast2009-03-11 10:30:0050.033 N, 4.367 WRV Plymouth Quest PQ090311
911787CTD or STD cast2009-04-01 10:35:0050.042 N, 4.375 WRV Plymouth Quest PQ090401
911799CTD or STD cast2009-04-15 10:50:0050.034 N, 4.369 WRV Plymouth Quest PQ090415
911806CTD or STD cast2009-05-28 10:30:0050.033 N, 4.367 WRV Plymouth Quest PQ090528
911818CTD or STD cast2009-06-09 10:30:0050.033 N, 4.367 WRV Plymouth Quest PQ090609
911831CTD or STD cast2009-06-23 10:30:0050.033 N, 4.367 WRV Plymouth Quest PQ090623
911843CTD or STD cast2009-07-23 10:30:0050.034 N, 4.362 WRV Plymouth Quest PQ090723
1047674CTD or STD cast2009-09-21 09:56:0050.0333 N, 4.3667 WRV Plymouth Quest PQ090921
1047698CTD or STD cast2009-09-30 13:55:0050.0333 N, 4.3667 WRV Plymouth Quest PQ090930
1047730CTD or STD cast2009-10-13 11:38:0050.035 N, 4.3717 WRV Plymouth Quest PQ091013
1047810CTD or STD cast2010-01-27 09:43:0050.0343 N, 4.367 WRV Plymouth Quest PQ100127
1047846CTD or STD cast2010-03-17 11:48:0050.0332 N, 4.3668 WRV Plymouth Quest PQ100317
1047625CTD or STD cast2010-04-28 09:45:0050.0333 N, 4.3667 WRV Plymouth Quest PQ100428
1047926CTD or STD cast2010-05-11 09:16:0050.0332 N, 4.3699 WRV Plymouth Quest PQ100511
1047999CTD or STD cast2010-06-17 09:11:0050.0314 N, 4.3671 WRV Plymouth Quest PQ100617
1048014CTD or STD cast2010-06-28 10:07:0050.033 N, 4.3604 WRV Plymouth Quest PQ100628
1048075CTD or STD cast2010-07-20 10:13:0050.0321 N, 4.3572 WRV Plymouth Quest PQ100720
1048131CTD or STD cast2010-08-17 09:29:0050.0406 N, 4.3638 WRV Plymouth Quest PQ100817
1048155CTD or STD cast2010-09-01 09:31:0050.0388 N, 4.3539 WRV Plymouth Quest PQ100901
1048192CTD or STD cast2010-09-21 09:38:0050.0345 N, 4.3684 WRV Plymouth Quest PQ100921
1048247CTD or STD cast2010-10-14 09:51:0050.0352 N, 4.3551 WRV Plymouth Quest PQ101014
1048296CTD or STD cast2010-11-15 10:37:0050.0345 N, 4.3614 WRV Plymouth Quest PQ101115
1048352CTD or STD cast2010-12-14 10:23:0050.0323 N, 4.3673 WRV Plymouth Quest PQ101214
1087480CTD or STD cast2011-01-18 10:13:0050.02974 N, 4.37391 WRV Plymouth Quest PQ110118
1087492CTD or STD cast2011-03-08 10:40:0050.0328 N, 4.3677 WRV Plymouth Quest PQ110308
1087511CTD or STD cast2011-03-21 10:32:0050.03503 N, 4.36074 WRV Plymouth Quest PQ110321
1087523CTD or STD cast2011-04-07 08:50:0050.03261 N, 4.3653 WRV Plymouth Quest PQ110407
1087535CTD or STD cast2011-04-19 09:59:0050.03478 N, 4.36175 WRV Plymouth Quest PQ110419
1087547CTD or STD cast2011-05-17 09:00:0050.03424 N, 4.36527 WRV Plymouth Quest PQ110517
1087559CTD or STD cast2011-06-02 09:07:0050.03253 N, 4.36644 WRV Plymouth Quest PQ110602
1872489Water sample data2011-06-15 04:29:0050.02907 N, 4.38014 WRRS Discovery D366 (D367)
2116698Water sample data2011-06-15 04:29:0050.02907 N, 4.38014 WRRS Discovery D366 (D367)
2125905Water sample data2011-06-15 04:29:0050.02907 N, 4.38014 WRRS Discovery D366 (D367)
2135242Water sample data2011-06-15 04:29:0050.02907 N, 4.38014 WRRS Discovery D366 (D367)
2135715Water sample data2011-06-15 04:29:0050.02907 N, 4.38014 WRRS Discovery D366 (D367)
1133262CTD or STD cast2011-06-15 04:37:1750.029 N, 4.3795 WRRS Discovery D366 (D367)
1872570Water sample data2011-06-24 04:19:0050.02622 N, 4.35911 WRRS Discovery D366 (D367)
2116822Water sample data2011-06-24 04:19:0050.02622 N, 4.35911 WRRS Discovery D366 (D367)
2126030Water sample data2011-06-24 04:19:0050.02622 N, 4.35911 WRRS Discovery D366 (D367)
2135383Water sample data2011-06-24 04:19:0050.02622 N, 4.35911 WRRS Discovery D366 (D367)
2135740Water sample data2011-06-24 04:19:0050.02622 N, 4.35911 WRRS Discovery D366 (D367)
1133410CTD or STD cast2011-06-24 04:27:0050.026 N, 4.3593 WRRS Discovery D366 (D367)
1087560CTD or STD cast2011-06-28 09:07:0050.02959 N, 4.36784 WRV Plymouth Quest PQ110628
1087572CTD or STD cast2011-07-14 08:47:0050.0346 N, 4.35778 WRV Plymouth Quest PQ110714
1087584CTD or STD cast2011-08-09 08:49:0050.033 N, 4.367 WRV Plymouth Quest PQ110809
1088090CTD or STD cast2011-08-23 08:40:0050.033 N, 4.367 WRV Plymouth Quest PQ110823
1087596CTD or STD cast2011-09-22 08:55:0050.033 N, 4.367 WRV Plymouth Quest PQ110922
1088121CTD or STD cast2011-10-28 09:51:0050.033 N, 4.367 WRV Plymouth Quest PQ111028
1087603CTD or STD cast2011-11-07 10:36:0050.03317 N, 4.36943 WRV Plymouth Quest PQ111107
1087615CTD or STD cast2011-11-22 10:23:0050.03011 N, 4.36706 WRV Plymouth Quest PQ111122
1114670CTD or STD cast2012-01-13 08:25:0050.0338 N, 4.3621 WRV Plymouth Quest PQ120113
1114694CTD or STD cast2012-01-23 11:26:0050.0363 N, 4.3629 WRV Plymouth Quest PQ120123
1114762CTD or STD cast2012-02-28 10:01:0050.0358 N, 4.3645 WRV Plymouth Quest PQ120228
1114798CTD or STD cast2012-03-14 10:13:0050.0338 N, 4.3648 WRV Plymouth Quest PQ120314
1114866CTD or STD cast2012-04-27 08:36:0050.0345 N, 4.3628 WRV Plymouth Quest PQ120427
1114910CTD or STD cast2012-05-16 09:59:0050.0341 N, 4.3675 WRV Plymouth Quest PQ120516
1114971CTD or STD cast2012-06-12 09:14:0050.039 N, 4.3587 WRV Plymouth Quest PQ120612
1115009CTD or STD cast2012-06-26 09:20:0050.0335 N, 4.3656 WRV Plymouth Quest PQ120626
1115034CTD or STD cast2012-07-10 09:13:0050.0335 N, 4.3649 WRV Plymouth Quest PQ120710
1115071CTD or STD cast2012-07-24 08:32:0050.034 N, 4.3701 WRV Plymouth Quest PQ120724
1115102CTD or STD cast2012-08-08 09:24:0050.0377 N, 4.3672 WRV Plymouth Quest PQ120808
1115138CTD or STD cast2012-08-23 09:05:0050.0377 N, 4.3626 WRV Plymouth Quest PQ120823
1115163CTD or STD cast2012-09-04 07:29:0050.0405 N, 4.3649 WRV Plymouth Quest PQ120904
1115199CTD or STD cast2012-09-19 08:08:0050.033 N, 4.367 WRV Plymouth Quest PQ120919
1115231CTD or STD cast2012-10-09 09:13:0050.0357 N, 4.3656 WRV Plymouth Quest PQ121009
1115267CTD or STD cast2012-10-23 09:02:0050.0334 N, 4.3669 WRV Plymouth Quest PQ121023
1115280CTD or STD cast2012-11-06 10:06:0050.0351 N, 4.367 WRV Plymouth Quest PQ121106
1115335CTD or STD cast2012-11-29 09:59:0050.0314 N, 4.3673 WRV Plymouth Quest PQ121129
1115360CTD or STD cast2012-12-11 10:04:0050.0356 N, 4.3625 WRV Plymouth Quest PQ121211
1178059CTD or STD cast2013-01-23 09:58:0050.03451 N, 4.36477 WRV Plymouth Quest PQ130123
1178084CTD or STD cast2013-02-12 10:54:0050.03281 N, 4.36995 WRV Plymouth Quest PQ130212
1178115CTD or STD cast2013-02-27 11:22:0050.03133 N, 4.38012 WRV Plymouth Quest PQ130227
1178152CTD or STD cast2013-03-20 09:59:0050.0348 N, 4.36685 WRV Plymouth Quest PQ130320
1178220CTD or STD cast2013-04-23 08:38:0050.03346 N, 4.36642 WRV Plymouth Quest PQ130423
1178244CTD or STD cast2013-05-01 08:54:0050.03341 N, 4.36597 WRV Plymouth Quest PQ130501
1178281CTD or STD cast2013-05-16 08:47:0050.03502 N, 4.36774 WRV Plymouth Quest PQ130516
1178324CTD or STD cast2013-06-04 08:56:0050.03571 N, 4.37419 WRV Plymouth Quest PQ130604
1178361CTD or STD cast2013-06-18 08:58:0050.03439 N, 4.36617 WRV Plymouth Quest PQ130618
1178397CTD or STD cast2013-07-02 08:36:0050.03556 N, 4.36149 WRV Plymouth Quest PQ130702
1178428CTD or STD cast2013-07-16 08:54:0050.03412 N, 4.36717 WRV Plymouth Quest PQ130716
1178477CTD or STD cast2013-08-07 08:20:0050.03234 N, 4.37056 WRV Plymouth Quest PQ130807
1178508CTD or STD cast2013-08-20 08:24:0050.033 N, 4.367 WRV Plymouth Quest PQ130820
1178545CTD or STD cast2013-09-03 08:28:0050.03293 N, 4.36791 WRV Plymouth Quest PQ130903
1178570CTD or STD cast2013-09-24 08:29:0050.03306 N, 4.36666 WRV Plymouth Quest PQ130924
1178613CTD or STD cast2013-10-15 08:33:0050.0476 N, 4.35584 WRV Plymouth Quest PQ131015
1178650CTD or STD cast2013-11-12 09:41:0050.03198 N, 4.36712 WRV Plymouth Quest PQ131112
1178686CTD or STD cast2013-11-26 09:45:0050.03312 N, 4.36218 WRV Plymouth Quest PQ131126
1643839CTD or STD cast2014-01-30 09:35:0050.03442 N, 4.36268 WRV Plymouth Quest PQ140130
1643840CTD or STD cast2014-02-19 10:50:0050.03496 N, 4.3639 WRV Plymouth Quest PQ140219
1643852CTD or STD cast2014-03-12 09:38:0050.03382 N, 4.36592 WRV Plymouth Quest PQ140312
1643864CTD or STD cast2014-04-10 08:48:0050.03183 N, 4.36628 WRV Plymouth Quest PQ140410
1643876CTD or STD cast2014-04-24 08:38:0050.0335 N, 4.36661 WRV Plymouth Quest PQ140424
1643888CTD or STD cast2014-05-14 08:18:0050.0459 N, 4.35162 WRV Plymouth Quest PQ140514
1643907CTD or STD cast2014-06-05 07:46:0050.033 N, 4.367 WRV Plymouth Quest PQ140605
1643919CTD or STD cast2014-06-17 07:46:0050.033 N, 4.367 WRV Plymouth Quest PQ140617
1643920CTD or STD cast2014-07-02 08:53:0050.03444 N, 4.3731 WRV Plymouth Quest PQ140702
1643932CTD or STD cast2014-07-22 09:10:0050.033 N, 4.367 WRV MBA Sepia MS140722
1643944CTD or STD cast2014-08-19 08:47:0050.03562 N, 4.36697 WRV Plymouth Quest PQ140819
1643956CTD or STD cast2014-09-02 08:49:0050.03324 N, 4.36759 WRV Plymouth Quest PQ140902
1643968CTD or STD cast2014-09-16 08:20:0050.03498 N, 4.36468 WRV Plymouth Quest PQ140916
1643981CTD or STD cast2014-09-30 08:36:0050.03714 N, 4.36779 WRV Plymouth Quest PQ140930
1643993CTD or STD cast2014-10-14 09:03:0050.03378 N, 4.36309 WRV Plymouth Quest PQ141014
1644007CTD or STD cast2014-11-18 09:26:0050.03433 N, 4.3676 WRV Plymouth Quest PQ141118
2118029Water sample data2014-12-01 06:50:0050.03414 N, 4.37065 WRRS Discovery DY018 (GApr04)
2120199Water sample data2014-12-01 06:50:0050.03414 N, 4.37065 WRRS Discovery DY018 (GApr04)
2121639Water sample data2014-12-01 06:50:0050.03414 N, 4.37065 WRRS Discovery DY018 (GApr04)
2137709Water sample data2014-12-01 06:50:0050.03414 N, 4.37065 WRRS Discovery DY018 (GApr04)
1644019CTD or STD cast2014-12-01 09:33:0050.03798 N, 4.37184 WRV Plymouth Quest PQ141201
1644683CTD or STD cast2015-01-22 10:38:2450.03118 N, 4.3715 WRV Plymouth Quest PQ150122
1644020CTD or STD cast2015-02-10 09:46:0550.03605 N, 4.36016 WRV Plymouth Quest PQ150210
1644032CTD or STD cast2015-03-10 09:42:4550.03139 N, 4.36569 WRV Plymouth Quest PQ150310
1644044CTD or STD cast2015-03-25 09:21:5450.03282 N, 4.36254 WRV Plymouth Quest PQ150325
1644056CTD or STD cast2015-04-09 09:17:5550.03342 N, 4.36362 WRV Plymouth Quest PQ150409
1644068CTD or STD cast2015-04-30 09:19:3050.0346 N, 4.36522 WRV Plymouth Quest PQ150430
1644081CTD or STD cast2015-05-21 08:21:2950.03374 N, 4.35879 WRV Plymouth Quest PQ150521
1644093CTD or STD cast2015-06-04 09:43:4750.03603 N, 4.35939 WRV Plymouth Quest PQ150604
1644100CTD or STD cast2015-06-16 09:59:5550.03446 N, 4.37177 WRV Plymouth Quest PQ150616
1644112CTD or STD cast2015-07-01 08:50:0950.03814 N, 4.37042 WRV Plymouth Quest PQ150701
1644124CTD or STD cast2015-07-15 10:18:4350.03389 N, 4.36518 WRV Plymouth Quest PQ150715
1644136CTD or STD cast2015-07-30 10:11:2250.03318 N, 4.36619 WRV Plymouth Quest PQ150730
1644148CTD or STD cast2015-08-11 10:17:5950.0316 N, 4.36984 WRV Plymouth Quest PQ150811
1644161CTD or STD cast2015-09-03 08:50:1350.03475 N, 4.3672 WRV Plymouth Quest PQ150903
1644173CTD or STD cast2015-09-18 08:40:0650.03681 N, 4.35722 WRV Plymouth Quest PQ150918
1644185CTD or STD cast2015-10-20 09:29:0250.03406 N, 4.36884 WRV Plymouth Quest PQ151020
1644197CTD or STD cast2015-11-26 10:10:4850.03348 N, 4.37453 WRV Plymouth Quest PQ151126
2074067CTD or STD cast2018-08-21 09:56:0050.0333 N, 4.36607 WRV MBA Sepia MS180821
2074092CTD or STD cast2018-08-30 10:18:0050.03293 N, 4.363 WRV MBA Sepia MS180830
2074123CTD or STD cast2018-10-08 10:10:0050.02952 N, 4.36633 WRV MBA Sepia MS181008
2074196CTD or STD cast2018-11-26 11:25:0050.03305 N, 4.3683 WRV MBA Sepia MS181126
2074319CTD or STD cast2019-11-11 12:21:0050.36155 N, 4.18325 WRV MBA Sepia MS191111
2074344CTD or STD cast2020-01-21 10:24:0050.03132 N, 4.3725 WRV MBA Sepia MS200121
2074424CTD or STD cast2020-07-29 10:23:0050.03045 N, 4.36345 WRV MBA Sepia MS200729