Search the data

Metadata Report for BODC Series Reference Number 2127358


Metadata Summary

Data Description

Data Category Water sample data
Instrument Type
NameCategories
Niskin bottle  discrete water samplers
SPX Bran+Luebbe colorimetric Autoanalyser 3  colorimeters; autoanalysers
Instrument Mounting lowered unmanned submersible
Originating Country United Kingdom
Originator Mr Malcolm Woodward
Originating Organization Plymouth Marine Laboratory
Processing Status banked
Online delivery of data Download available - Ocean Data View (ODV) format
Project(s) Shelf Sea Biogeochemistry (SSB)
 

Data Identifiers

Originator's Identifier DY021_CTD_NUTS_62:508
BODC Series Reference 2127358
 

Time Co-ordinates(UT)

Start Time (yyyy-mm-dd hh:mm) 2015-03-24 05:59
End Time (yyyy-mm-dd hh:mm) -
Nominal Cycle Interval -
 

Spatial Co-ordinates

Latitude 48.57066 N ( 48° 34.2' N )
Longitude 9.50930 W ( 9° 30.6' W )
Positional Uncertainty 0.0 to 0.01 n.miles
Minimum Sensor or Sampling Depth 5.9 m
Maximum Sensor or Sampling Depth 197.3 m
Minimum Sensor or Sampling Height 12.5 m
Maximum Sensor or Sampling Height 203.9 m
Sea Floor Depth 209.8 m
Sea Floor Depth Source BUDS
Sensor or Sampling Distribution Unspecified -
Sensor or Sampling Depth Datum Unspecified -
Sea Floor Depth Datum Unspecified -
 

Parameters

BODC CODERankUnitsTitle
ADEPZZ011MetresDepth (spatial coordinate) relative to water surface in the water body
AMONAATX1Micromoles per litreConcentration of ammonium {NH4+ CAS 14798-03-9} per unit volume of the water body [dissolved plus reactive particulate phase] by colorimetric autoanalysis
BOTTFLAG1Not applicableSampling process quality flag (BODC C22)
NTRIAATX1Micromoles per litreConcentration of nitrite {NO2- CAS 14797-65-0} per unit volume of the water body [dissolved plus reactive particulate phase] by colorimetric autoanalysis
NTRZAATX1Micromoles per litreConcentration of nitrate+nitrite {NO3+NO2} per unit volume of the water body [dissolved plus reactive particulate phase] by colorimetric autoanalysis
PHOSAATX1Micromoles per litreConcentration of phosphate {PO43- CAS 14265-44-2} per unit volume of the water body [dissolved plus reactive particulate phase] by colorimetric autoanalysis
ROSPOSID1DimensionlessBottle rosette position identifier
SAMPRFNM1DimensionlessSample reference number
SLCAAATX1Micromoles per litreConcentration of silicate {SiO44- CAS 17181-37-2} per unit volume of the water body [dissolved plus reactive particulate phase] by colorimetric autoanalysis

Definition of BOTTFLAG

BOTTFLAGDefinition
0The sampling event occurred without any incident being reported to BODC.
1The filter in an in-situ sampling pump physically ruptured during sample resulting in an unquantifiable loss of sampled material.
2Analytical evidence (e.g. surface water salinity measured on a sample collected at depth) indicates that the water sample has been contaminated by water from depths other than the depths of sampling.
3The feedback indicator on the deck unit reported that the bottle closure command had failed. General Oceanics deck units used on NERC vessels in the 80s and 90s were renowned for reporting misfires when the bottle had been closed. This flag is also suitable for when a trigger command is mistakenly sent to a bottle that has previously been fired.
4During the sampling deployment the bottle was fired in an order other than incrementing rosette position. Indicative of the potential for errors in the assignment of bottle firing depth, especially with General Oceanics rosettes.
5Water was reported to be escaping from the bottle as the rosette was being recovered.
6The bottle seals were observed to be incorrectly seated and the bottle was only part full of water on recovery.
7Either the bottle was found to contain no sample on recovery or there was no bottle fitted to the rosette position fired (but SBE35 record may exist).
8There is reason to doubt the accuracy of the sampling depth associated with the sample.
9The bottle air vent had not been closed prior to deployment giving rise to a risk of sample contamination through leakage.

Definition of Rank

  • Rank 1 is a one-dimensional parameter
  • Rank 2 is a two-dimensional parameter
  • Rank 0 is a one-dimensional parameter describing the second dimension of a two-dimensional parameter (e.g. bin depths for moored ADCP data)

Problem Reports

No Problem Report Found in the Database


Data Access Policy

Open Data

These data have no specific confidentiality restrictions for users. However, users must acknowledge data sources as it is not ethical to publish data without proper attribution. Any publication or other output resulting from usage of the data should include an acknowledgment.

If the Information Provider does not provide a specific attribution statement, or if you are using Information from several Information Providers and multiple attributions are not practical in your product or application, you may consider using the following:

"Contains public sector information licensed under the Open Government Licence v1.0."


Narrative Documents

SPX Bran+Luebbe Autoanalyser 3

The instrument uses continuous flow analysis (CFA) with a continuous stream of material divided by air bubbles into discrete segments in which chemical reactions occur. The continuous stream of liquid samples and reagents are combined and transported in tubing and mixing coils. The tubing passes the samples from one apparatus to the other with each apparatus performing different functions, such as distillation, dialysis, extraction, ion exchange, heating, incubation, and subsequent recording of a signal.

An essential principle of the system is the introduction of air bubbles. The air bubbles segment each sample into discrete packets and act as a barrier between packets to prevent cross contamination as they travel down the length of the tubing. The air bubbles also assist mixing by creating turbulent flow (bolus flow), and provide operators with a quick and easy check of the flow characteristics of the liquid.

Samples and standards are treated in an exactly identical manner as they travel the length of the tubing, eliminating the necessity of a steady state signal, however, since the presence of bubbles create an almost square wave profile, bringing the system to steady state does not significantly decrease throughput and is desirable in that steady state signals (chemical equilibrium) are more accurate and reproducible.

The autoanalyzer can consist of different modules including a sampler, pump, mixing coils, optional sample treatments (dialysis, distillation, heating, etc), a detector, and data generator. Most continuous flow analyzers depend on color reactions using a flow through colorimeter, however other methods have been developed that use ISE, flame photometry, ICAP, fluorometry, and so forth.

More details can be found in the manufacturer's introduction to autoanalysers andinstrument description.

Niskin Bottle

The Niskin bottle is a device used by oceanographers to collect subsurface seawater samples. It is a plastic bottle with caps and rubber seals at each end and is deployed with the caps held open, allowing free-flushing of the bottle as it moves through the water column.

Standard Niskin

The standard version of the bottle includes a plastic-coated metal spring or elastic cord running through the interior of the bottle that joins the two caps, and the caps are held open against the spring by plastic lanyards. When the bottle reaches the desired depth the lanyards are released by a pressure-actuated switch, command signal or messenger weight and the caps are forced shut and sealed, trapping the seawater sample.

Lever Action Niskin

The Lever Action Niskin Bottle differs from the standard version, in that the caps are held open during deployment by externally mounted stainless steel springs rather than an internal spring or cord. Lever Action Niskins are recommended for applications where a completely clear sample chamber is critical or for use in deep cold water.

Clean Sampling

A modified version of the standard Niskin bottle has been developed for clean sampling. This is teflon-coated and uses a latex cord to close the caps rather than a metal spring. The clean version of the Levered Action Niskin bottle is also teflon-coated and uses epoxy covered springs in place of the stainless steel springs. These bottles are specifically designed to minimise metal contamination when sampling trace metals.

Deployment

Bottles may be deployed singly clamped to a wire or in groups of up to 48 on a rosette. Standard bottles and Lever Action bottles have a capacity between 1.7 and 30 L. Reversing thermometers may be attached to a spring-loaded disk that rotates through 180° on bottle closure.

Discrete inorganic nutrient samples from CTD bottles and underway supply during RRS Discovery cruise DY021

Originator's Protocol for Data Acquisition and Analysis

Sampling strategy

Discrete samples were collected from a total of 21 CTD casts, 15 were carried out with the stainless steel CTD and the remaining 6 with a titanium frame CTD. Each frame had the following characteristics:

Sensor Unit Serial Number
Stainless Steel frame  
Sea-Bird SBE 9plus underwater unit 09P-24680-0637
Sea-Bird SBE 9plus deck unit 11P-34173-0676
Sea-Bird SBE 32 twenty-four way carousel 32-31240-0423
24 x 10 L TMF Water Samplers -
Titanium frame  
Sea-Bird SBE 9plus underwater unit 09P-77801-1182
Sea-Bird SBE 9plus deck unit 11P-34173-0676
Sea-Bird SBE 32 twenty-four way carousel 32-60380-0805/td>
24 x 10 L TMF Water Samplers -

CTD samples were withdrawn from 1 to 9 depths, spanning the upper 200m of the water column and 11 discrete samples were also withdrawn from the underway non-toxic, pumped-seawater supply (intake approximately 6 m below sea-level). The water sample was transferred from the CTD or underway supply to a 60 ml HDPE Nalgene bottles (acid washed and cleaned) using a silicone tubing, with the sample bottle being washed three times before the taking the final sample. The sample was taken to the ship's lab for immediate analysis. Gloves and other clean handling protocols were adopted following the GO-SHIP protocols.

Sample Analysis

The inorganic nutrient samples were analysed using a 5 channel (nitrate, nitrite, phosphate, silicate and ammonium) Bran and Luebbe AAIII segmented flow, colorimetric, autoanalyser. The data were calibrated against home nutrient standards and then compared against Certified Nutrient Reference Materials, from KANSO Technos, Japan.

The analytical chemical methodologies used were according to Brewer and Riley (1965) for nitrate, Grasshoff (1976) for nitrite, Kirkwood (1989) for phosphate and silicate, and Mantoura and Woodward (1983) for ammonium. The detection limits were 0.01 µ mol l-1 (nitrite), 0.02 µ mol l-1 (nitrate+nitrite), 0.03 µ mol l-1 (ammonium) and 0.02 µ mol l-1 (phosphate). There was no limit for silicate.

References

Kirkwood D., 1989. Simultaneous determination of selected nutrients in seawater. ICES CM 1989/C:29.

Brewer and Riley, 1965. The automatic determination of nitrate in sea water. Deep Sea Research, 12, 765-72.

Grasshoff K., 1976. Methods of seawater analysis. Verlag Chemie, Weiheim and New York, 317pp.

Mantoura R.F.C and Woodward E.M.S, 1983. Optimization of the indophenol blue method for the automated determination of ammonia in estuarine waters. Estuarine Coastal and Shelf Science, 17, 219-24.

BODC Data Processing Procedures

The data arrived at BODC in one Excel (.xlsx) file containing discrete samples collected from the DY021 CTD deployments and underway non-toxic, pumped-seawater supply. Data received were loaded into the BODC database using established BODC data banking procedures.

Originator's variables were mapped to appropriate BODC parameter codes as follows:

Originator's Parameter Originator's Unit Description BODC Parameter Code BODC Unit
Nitrite µmol l-1 Concentration of nitrite {NO2- CAS 14797-65-0} per unit volume of the water body [dissolved plus reactive particulate phase] by colorimetric autoanalysis NTRIAATX µmol l-1
Nitrate+Nit µmol l-1 Concentration of nitrate+nitrite {NO3+NO2} per unit volume of the water body [dissolved plus reactive particulate phase] by colorimetric autoanalysis NTRZAATX µmol l-1
Ammonium µmol l-1 Concentration of ammonium {NH4+ CAS 14798-03-9} per unit volume of the water body [dissolved plus reactive particulate phase] by colorimetric autoanalysis AMONAATX µmol l-1
- - Concentration standard deviation of ammonium {NH4+ CAS 14798-03-9} per unit volume of the water body [dissolved plus reactive particulate phase] by colorimetric autoanalysis SDAMAATX µmol l-1
Silicate µmol l-1 Concentration of silicate {SiO44- CAS 17181-37-2} per unit volume of the water body [dissolved plus reactive particulate phase] by colorimetric autoanalysis SLCAAATX µmol l-1
Phosphate µmol l-1 Concentration of phosphate {PO43- CAS 14265-44-2} per unit volume of the water body [dissolved plus reactive particulate phase] by colorimetric autoanalysis PHOSAATX µmol l-1

Data Quality Report

Several AMONAATX samples were found to be below the detection limit. All instances were flagged accordingly and the value set to 0.03 µ mol l-1.

Problem Report

None. (BODC assessment)


Project Information

Shelf Sea Biogeochemistry (SSB) Programme

Shelf Sea Biogeochemistry (SSB) is a £10.5 million, six-year (2011-2017) research programme, jointly funded by the Natural Environment Research Council (NERC) and the Department for Environment, Food and Rural Affairs (DEFRA). The aim of the research is to reduce the uncertainty in our understanding of nutrient and carbon cycling within the shelf seas, and of their role in global biogeochemical cycles. SSB will also provide effective policy advice and make a significant contribution to the Living with Environmental Change programme.

Background

The Shelf Sea Biogeochemistry research programme directly relates to the delivery of the NERC Earth system science theme and aims to provide evidence that supports a number of marine policy areas and statutory requirements, such as the Marine Strategy Framework Directive and Marine and Climate Acts.

The shelf seas are highly productive compared to the open ocean, a productivity that underpins more than 90 per cent of global fisheries. Their importance to society extends beyond food production to include issues of biodiversity, carbon cycling and storage, waste disposal, nutrient cycling, recreation and renewable energy resources.

The shelf seas have been estimated to be the most valuable biome on Earth, but they are under considerable stress, as a result of anthropogenic nutrient loading, overfishing, habitat disturbance, climate change and other impacts.

However, even within the relatively well-studied European shelf seas, fundamental biogeochemical processes are poorly understood. For example: the role of shelf seas in carbon storage; in the global cycles of key nutrients (nitrogen, phosphorus, silicon and iron); and in determining primary and secondary production, and thereby underpinning the future delivery of many other ecosystem services.

Improved knowledge of such factors is not only required by marine policymakers; it also has the potential to increase the quality and cost-effectiveness of management decisions at the local, national and international levels under conditions of climate change.

The Shelf Sea Biogeochemistry research programme will take a holistic approach to the cycling of nutrients and carbon and the controls on primary and secondary production in UK and European shelf seas, to increase understanding of these processes and their role in wider biogeochemical cycles. It will thereby significantly improve predictive marine biogeochemical and ecosystem models over a range of scales.

The scope of the programme includes exchanges with the open ocean (transport on and off the shelf to a depth of around 500m), together with cycling, storage and release processes on the shelf slope, and air-sea exchange of greenhouse gases (carbon dioxide and nitrous oxide).

Further details are available on the SSB website.

Participants

15 different organisations are directly involved in research for SSB. These institutions are

  • Centre for Environment, Fisheries and Aquaculture Science (Cefas)
  • Meteorological Office
  • National Oceanography Centre (NOC)
  • Plymouth Marine Laboratory (PML)
  • Scottish Association for Marine Science (SAMS) / Scottish Marine Institute (SMI)
  • University of Aberdeen
  • University of Bangor
  • University of East Anglia (UEA)
  • University of Edinburgh
  • University of Essex
  • University of Liverpool
  • University of Oxford
  • Plymouth University
  • University of Portsmouth
  • University of Southampton

In addition, there are third party institutions carrying out sampling work for SSB, but who are not involved in the programme itself. These are:

  • The Agri-Food and Biosciences Institute (AFBI)
  • Irish Marine Institute (MI)
  • Marine Science Scotland (MSS)

Research details

Overall, five Work Packages have been funded by the SSB programme. These are described in brief below:

  • Work Package 1: Carbon and Nutrient Dynamics and Fluxes over Shelf Systems (CaNDyFloSS).
    This work package aims to perform a comprehensive study of the cycling of nutrients and carbon throughout the water column over the whole north-west European shelf. This will allow the fluxes of nutrients and carbon between the shelf and the deep ocean and atmosphere to be quantified, establishing the role of the north-west European continental shelf in the global carbon cycle.

  • Work Package 2: Biogeochemistry, macronutrient and carbon cycling in the benthic layer.
    This work package aims are to map the sensitivity and status of seabed habitats, based on physical conditions, ecological community structure and the size and dynamics of the nitrogen and carbon pools found there. This information will be used, in conjunction with some laboratory-based work, to generate an understanding of the potential impacts on the benthic community as a result of changing environmental conditions, such as rising CO2 levels.

  • Work Package 3: The supply of iron from shelf sediments to the ocean.
    The research for this work package addresses the question of how currents, tides, weather and marine chemistry allow new iron to be transported away from the shallow shelf waters around the United Kingdom (UK), to the nearby open ocean. This will ultimately allow an improved understanding of how the transport of iron in shelf waters and shelf sediments influences phytoplankton growth in open oceans. This in turn improves the understanding of carbon dioxide uptake by phytoplankton.

  • Work Package 4: Integrative modelling for Shelf Seas Biogeochemistry.
    The aim of this work package is the development of a new shelf seas biogeochemical model system, coupled to a state of the art physical model, that is capable of predicting regional impacts of environmental change of timescales from days to decades. It is envisaged that the combination of predictive tools and new knowledge developed in this work package will underpin development and implementation of marine policy and marine forecasting systems.

  • Work Package 5: Data synthesis and management of marine and coastal carbon (DSMMAC).
    This work package is funded by Defra and is also known by the name 'Blue Carbon'. The aim is to provide a process-based, quantitative assessment of the role of UK coastal waters and shelf seas in carbon storage and release, using existing data and understanding, and also emerging results from SSB fieldwork, experiments and modelling. Particular emphasis will be given to processes that may be influenced by human activities, and hence the opportunity for management interventions to enhance carbon sequestration.

Fieldwork and data collection

The campaign consists of the core cruises in the table below, to the marine shelf (and shelf-edge) of the Celtic Sea on board the NERC research vessels RRS Discovery and RRS James Cook. These cruises will focus on the physics and biogeochemistry of the benthic and pelagic zones of the water column, primarily around four main sampling sites in this area.

Cruise identifier Research ship Cruise dates Work packages
DY008 RRS Discovery March 2014 WP 2 and WP 3
JC105 RRS James Cook June 2014 WP 1, WP 2 and WP 3
DY026 RRS Discovery August 2014 WP1, WP 2 and WP 3
DY018 RRS Discovery November - December 2014 WP 1 and WP 3
DY021 (also known as DY008b) RRS Discovery March 2015 WP 2 and WP 3
DY029 RRS Discovery April 2015 WP 1 and WP 3
DY030 RRS Discovery May 2015 WP 2 and WP 3
DY033 RRS Discovery July 2015 WP 1 and WP 3
DY034 RRS Discovery August 2015 WP 2 and WP 3

Core cruises will be supplemented by partner cruises led by Cefas, MI, MSS, Bangor University and AFBI, spanning the shelf seas and shelf-edges around United Kingdom and Republic of Ireland.

Activities will include coring, Conductivity Temperature and Depth (CTD) deployments, Acoustic Doppler Current Profilers (ADCP) surveys, moorings and wire-walker deployments, benthic lander observatories, autonomous gliders and submersible surveys, Marine Snow Catcher particulate matter analysis, plankton net hauls, in-situ sediment flume investigations and laboratory incubations with core and sea water samples.


Data Activity or Cruise Information

Data Activity

Start Date (yyyy-mm-dd) 2015-03-24
End Date (yyyy-mm-dd) 2015-03-24
Organization Undertaking ActivityPlymouth Marine Laboratory
Country of OrganizationUnited Kingdom
Originator's Data Activity IdentifierDY021_CTD_508
Platform Categorylowered unmanned submersible

No Document Information Held for the Series

Related Data Activity activities are detailed in Appendix 1

Cruise

Cruise Name DY021
Departure Date 2015-03-01
Arrival Date 2015-03-26
Principal Scientist(s)E Malcolm S Woodward (Plymouth Marine Laboratory)
Ship RRS Discovery

Complete Cruise Metadata Report is available here


Fixed Station Information

Fixed Station Information

Station NameCS2
CategoryOffshore area
Latitude48° 33.23' N
Longitude9° 29.17' W
Water depth below MSL200.0 m

Physical-Biological Control of New Production within the Seasonal Thermocline: Fixed Station CS2

This station is positioned close to the edge of the north-west European shelf edge (see figure below). It was first visited by the RRS James Clark Ross (JR98) in 2003 and then by the RRS Charles Darwin (CD173) in 2005. This station was then re-visited in 2014 during the RRS Discovery cruise DY018, as part of work package I of the Shelf Seas Biogeochemistry project. The station has a mean water depth 201 m at the following co-ordinates:

Box Corner Latitude Longitude
North-west corner 48.5838° -9.5497°
South-east corner 48.4998° -9.4364°

The position of this station relative to the other sites visited during JR98, CD173 and DY018 can be seen from the figure below.

BODC image

The following table describes which sites were visited during which cruises

JB3 Bank 2 OB IS1b CS1 CS2 CS3 U2 Candyfloss/CCS Benthic A Benthic H Benthic I Benthic G East of Haig Fras Nymph Bank Celtic Deep East of Celtic Deep
JR98 - - - X X X X X - - - - - - - - -
CD173 X X X - - - - X - - - - - - - - -
DY018 - - - - - X - - X X X X X X X X X

The deployment and sampling history, to date, for this station is summarised below:

Sampling History

JR98 CD173 DY018
CTD casts 30 15 15
Free-fall light yo-yo profiles - 153 -
Profiling radiometer - 16 -
Zooplankton net hauls - - 32
Box cores - - 5
Marine snow catcher deployments - - 17
Stand Alone Pump Systems (SAPS) - - 2

Mooring deployments

Latitude Longitude Water depth (m) Moored instrument Deployment date Recovery date Deployment cruise Recovery cruise Comments
48.532° -9.463° 200 Surface temperature toroid 2003-07-28 2003-08-12 JR98 JR98 -
48.532° -9.463° 200 Thermistor chain throughout water column 2003-07-28 2003-08-12 JR98 JR98 -
48.532° -9.463° 200 Sub-surface 600 kHz ADCP 2003-07-28 2003-08-12 JR98 JR98 -
48.532° -9.463° 200 Aanderaa RCM7 current meter/CTD 2003-07-28 2003-08-12 JR98 JR98 -
48.532° -9.463° 200 Seabed frame 150 kHz ADCP 2003-07-28 2003-08-12 JR98 JR98 -
48.532° -9.463° 200 Seabed frame 300 kHz ADCP 2003-07-28 2003-08-12 JR98 JR98 -
48.571° -9.509° 200 Thermistor chain throughout water column 2005-07-17 2005-07-24 CD173 CD173 -
48.573° -9.51° 194 Sub-surface 300 kHz ADCP 2005-07-17 2005-07-24 CD173 CD173 -
48.572° -9.508° 196 Seabed frame 300 kHz ADCP 2005-07-17 2005-07-24 CD173 CD173 -
48.571° -9.507° 202 Seabed frame 150 kHz ADCP 2005-07-17 2005-07-24 CD173 CD173 -
- - 205 T-F chain 2014-11-17 09:03 UTC 2014-11-19 17:07 UTC DY018 DY018 -

Related Fixed Station activities are detailed in Appendix 2


BODC Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
Blank Unqualified
< Below detection limit
> In excess of quoted value
A Taxonomic flag for affinis (aff.)
B Beginning of CTD Down/Up Cast
C Taxonomic flag for confer (cf.)
D Thermometric depth
E End of CTD Down/Up Cast
G Non-taxonomic biological characteristic uncertainty
H Extrapolated value
I Taxonomic flag for single species (sp.)
K Improbable value - unknown quality control source
L Improbable value - originator's quality control
M Improbable value - BODC quality control
N Null value
O Improbable value - user quality control
P Trace/calm
Q Indeterminate
R Replacement value
S Estimated value
T Interpolated value
U Uncalibrated
W Control value
X Excessive difference

SeaDataNet Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
0 no quality control
1 good value
2 probably good value
3 probably bad value
4 bad value
5 changed value
6 value below detection
7 value in excess
8 interpolated value
9 missing value
A value phenomenon uncertain
B nominal value
Q value below limit of quantification

Appendix 1: DY021_CTD_508

Related series for this Data Activity are presented in the table below. Further information can be found by following the appropriate links.

If you are interested in these series, please be aware we offer a multiple file download service. Should your credentials be insufficient for automatic download, the service also offers a referral to our Enquiries Officer who may be able to negotiate access.

Series IdentifierData CategoryStart date/timeStart positionCruise
2118091Water sample data2015-03-24 05:59:0048.57066 N, 9.5093 WRRS Discovery DY021

Appendix 2: CS2

Related series for this Fixed Station are presented in the table below. Further information can be found by following the appropriate links.

If you are interested in these series, please be aware we offer a multiple file download service. Should your credentials be insufficient for automatic download, the service also offers a referral to our Enquiries Officer who may be able to negotiate access.

Series IdentifierData CategoryStart date/timeStart positionCruise
1106504CTD or STD cast2003-07-27 21:58:0248.49983 N, 9.54967 WRRS James Clark Ross JR20030725 (JR98)
1106528CTD or STD cast2003-07-29 02:56:5948.538 N, 9.46383 WRRS James Clark Ross JR20030725 (JR98)
1106541CTD or STD cast2003-07-29 03:58:0248.538 N, 9.46417 WRRS James Clark Ross JR20030725 (JR98)
1106553CTD or STD cast2003-07-29 05:20:5948.538 N, 9.46417 WRRS James Clark Ross JR20030725 (JR98)
1106565CTD or STD cast2003-07-29 06:01:0048.538 N, 9.464 WRRS James Clark Ross JR20030725 (JR98)
1106577CTD or STD cast2003-07-29 06:58:0248.538 N, 9.46417 WRRS James Clark Ross JR20030725 (JR98)
1106589CTD or STD cast2003-07-29 08:01:5848.538 N, 9.464 WRRS James Clark Ross JR20030725 (JR98)
1106590CTD or STD cast2003-07-29 09:17:0048.538 N, 9.46417 WRRS James Clark Ross JR20030725 (JR98)
1106608CTD or STD cast2003-07-29 10:22:5748.538 N, 9.464 WRRS James Clark Ross JR20030725 (JR98)
1106621CTD or STD cast2003-07-29 11:15:0448.53783 N, 9.464 WRRS James Clark Ross JR20030725 (JR98)
1106633CTD or STD cast2003-07-29 12:28:5748.53783 N, 9.464 WRRS James Clark Ross JR20030725 (JR98)
1106645CTD or STD cast2003-07-29 13:37:0348.53783 N, 9.464 WRRS James Clark Ross JR20030725 (JR98)
1106657CTD or STD cast2003-07-29 14:06:0048.53783 N, 9.464 WRRS James Clark Ross JR20030725 (JR98)
1106669CTD or STD cast2003-07-29 15:00:0048.538 N, 9.464 WRRS James Clark Ross JR20030725 (JR98)
1106670CTD or STD cast2003-07-29 16:12:0048.538 N, 9.464 WRRS James Clark Ross JR20030725 (JR98)
1106682CTD or STD cast2003-07-29 17:00:5848.538 N, 9.46417 WRRS James Clark Ross JR20030725 (JR98)
1106694CTD or STD cast2003-07-29 18:00:0048.53783 N, 9.464 WRRS James Clark Ross JR20030725 (JR98)
1106701CTD or STD cast2003-07-29 18:58:0248.53783 N, 9.46417 WRRS James Clark Ross JR20030725 (JR98)
1106713CTD or STD cast2003-07-29 19:59:5748.53783 N, 9.46417 WRRS James Clark Ross JR20030725 (JR98)
1106725CTD or STD cast2003-07-29 20:57:5948.53783 N, 9.464 WRRS James Clark Ross JR20030725 (JR98)
1106737CTD or STD cast2003-07-29 21:57:0148.538 N, 9.464 WRRS James Clark Ross JR20030725 (JR98)
1106749CTD or STD cast2003-07-29 23:07:0048.538 N, 9.46383 WRRS James Clark Ross JR20030725 (JR98)
1106750CTD or STD cast2003-07-29 23:56:5948.53783 N, 9.464 WRRS James Clark Ross JR20030725 (JR98)
1106762CTD or STD cast2003-07-30 00:58:0248.53783 N, 9.464 WRRS James Clark Ross JR20030725 (JR98)
1106774CTD or STD cast2003-07-30 01:57:0448.53783 N, 9.464 WRRS James Clark Ross JR20030725 (JR98)
1106786CTD or STD cast2003-07-30 02:56:5948.53833 N, 9.46317 WRRS James Clark Ross JR20030725 (JR98)
1106798CTD or STD cast2003-07-30 03:59:0248.538 N, 9.464 WRRS James Clark Ross JR20030725 (JR98)
1106805CTD or STD cast2003-07-30 05:09:0148.538 N, 9.464 WRRS James Clark Ross JR20030725 (JR98)
1108326CTD or STD cast2003-08-12 06:46:5748.52383 N, 9.45533 WRRS James Clark Ross JR20030725 (JR98)
1108338CTD or STD cast2003-08-12 11:25:0048.52883 N, 9.47533 WRRS James Clark Ross JR20030725 (JR98)
737376CTD or STD cast2005-07-17 18:57:0048.575 N, 9.51433 WRRS Charles Darwin CD173
737388CTD or STD cast2005-07-17 21:14:0048.57517 N, 9.515 WRRS Charles Darwin CD173
737407CTD or STD cast2005-07-17 23:07:0048.57617 N, 9.51083 WRRS Charles Darwin CD173
737419CTD or STD cast2005-07-18 00:58:0048.57533 N, 9.50133 WRRS Charles Darwin CD173
737420CTD or STD cast2005-07-18 07:19:0048.568 N, 9.50233 WRRS Charles Darwin CD173
1174790PAR radiance and irradiance2005-07-18 09:32:4748.532 N, 9.463 WRRS Charles Darwin CD173
1174808PAR radiance and irradiance2005-07-18 09:39:4548.532 N, 9.463 WRRS Charles Darwin CD173
737432CTD or STD cast2005-07-18 12:02:0048.56817 N, 9.5115 WRRS Charles Darwin CD173
1174821PAR radiance and irradiance2005-07-18 14:02:4548.532 N, 9.463 WRRS Charles Darwin CD173
1174833PAR radiance and irradiance2005-07-18 14:07:2248.532 N, 9.463 WRRS Charles Darwin CD173
737444CTD or STD cast2005-07-18 16:22:0048.5705 N, 9.49217 WRRS Charles Darwin CD173
737456CTD or STD cast2005-07-18 18:39:0048.56867 N, 9.48233 WRRS Charles Darwin CD173
737616CTD or STD cast2005-07-23 03:00:0048.57167 N, 9.48967 WRRS Charles Darwin CD173
737628CTD or STD cast2005-07-23 07:18:0048.57083 N, 9.48733 WRRS Charles Darwin CD173
1174845PAR radiance and irradiance2005-07-23 09:10:3748.532 N, 9.463 WRRS Charles Darwin CD173
1174857PAR radiance and irradiance2005-07-23 09:15:5148.532 N, 9.463 WRRS Charles Darwin CD173
1174869PAR radiance and irradiance2005-07-23 09:22:3748.532 N, 9.463 WRRS Charles Darwin CD173
737641CTD or STD cast2005-07-23 10:32:0048.5785 N, 9.50317 WRRS Charles Darwin CD173
737653CTD or STD cast2005-07-23 15:25:0048.57733 N, 9.48133 WRRS Charles Darwin CD173
1174870PAR radiance and irradiance2005-07-23 17:08:3248.532 N, 9.463 WRRS Charles Darwin CD173
1174882PAR radiance and irradiance2005-07-23 18:40:3548.532 N, 9.463 WRRS Charles Darwin CD173
737665CTD or STD cast2005-07-23 19:59:0048.57617 N, 9.48967 WRRS Charles Darwin CD173
737677CTD or STD cast2005-07-23 23:07:0048.58083 N, 9.50617 WRRS Charles Darwin CD173
737689CTD or STD cast2005-07-24 04:03:0048.5825 N, 9.512 WRRS Charles Darwin CD173
1371585CTD or STD cast2014-03-28 15:49:0048.57113 N, 9.5127 WRRS Discovery DY008
1336711Water sample data2014-03-28 15:55:0048.57113 N, 9.5127 WRRS Discovery DY008
2117548Water sample data2014-03-28 15:55:0048.57113 N, 9.5127 WRRS Discovery DY008
2119101Water sample data2014-03-28 15:55:0048.57113 N, 9.5127 WRRS Discovery DY008
1373057CTD or STD cast2014-08-07 06:04:0048.57 N, 9.51 WRRS Discovery DY026A
2127506Water sample data2014-08-07 06:20:0048.5699 N, 9.51027 WRRS Discovery DY026A
1373069CTD or STD cast2014-08-07 11:10:0048.57633 N, 9.51617 WRRS Discovery DY026A
2118146Water sample data2014-08-07 11:29:3048.57648 N, 9.5154 WRRS Discovery DY026A
2127518Water sample data2014-08-07 11:29:3048.57648 N, 9.5154 WRRS Discovery DY026A
1373070CTD or STD cast2014-08-07 15:00:0048.57167 N, 9.505 WRRS Discovery DY026A
2127531Water sample data2014-08-07 15:17:0048.5711 N, 9.5046 WRRS Discovery DY026A
1371849CTD or STD cast2014-11-14 13:15:0048.571 N, 9.50947 WRRS Discovery DY018 (GApr04)
2117689Water sample data2014-11-14 13:23:3048.57106 N, 9.50945 WRRS Discovery DY018 (GApr04)
1749283Fluorescence or pigments2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749295Fluorescence or pigments2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749302Fluorescence or pigments2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749314Fluorescence or pigments2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749326Fluorescence or pigments2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749338Hydrography time series at depth2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749351Hydrography time series at depth2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749363Hydrography time series at depth2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749375Hydrography time series at depth2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749399Hydrography time series at depth2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749406Hydrography time series at depth2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749418Hydrography time series at depth2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749431Hydrography time series at depth2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749443Hydrography time series at depth2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749455Hydrography time series at depth2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749467Hydrography time series at depth2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749479Hydrography time series at depth2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749480Hydrography time series at depth2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749492Hydrography time series at depth2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749511Hydrography time series at depth2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749523Hydrography time series at depth2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749535Hydrography time series at depth2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749547Hydrography time series at depth2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749559Hydrography time series at depth2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749560Hydrography time series at depth2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749572Hydrography time series at depth2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749584Hydrography time series at depth2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749596Hydrography time series at depth2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749387Hydrography time series at depth2014-11-17 10:00:3048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1371978CTD or STD cast2014-11-17 12:25:0048.57087 N, 9.50968 WRRS Discovery DY018 (GApr04)
2117690Water sample data2014-11-17 12:35:3048.57086 N, 9.50969 WRRS Discovery DY018 (GApr04)
2119832Water sample data2014-11-17 12:35:3048.57086 N, 9.50969 WRRS Discovery DY018 (GApr04)
2126804Water sample data2014-11-17 12:35:3048.57086 N, 9.50969 WRRS Discovery DY018 (GApr04)
2136614Water sample data2014-11-17 12:35:3048.57086 N, 9.50969 WRRS Discovery DY018 (GApr04)
1371991CTD or STD cast2014-11-17 15:42:0048.57087 N, 9.50968 WRRS Discovery DY018 (GApr04)
1372005CTD or STD cast2014-11-18 05:16:0048.57107 N, 9.51052 WRRS Discovery DY018 (GApr04)
2117708Water sample data2014-11-18 05:28:0048.57107 N, 9.51051 WRRS Discovery DY018 (GApr04)
2126816Water sample data2014-11-18 05:28:0048.57107 N, 9.51051 WRRS Discovery DY018 (GApr04)
2136626Water sample data2014-11-18 05:28:0048.57107 N, 9.51051 WRRS Discovery DY018 (GApr04)
1372017CTD or STD cast2014-11-18 08:10:0048.57127 N, 9.51102 WRRS Discovery DY018 (GApr04)
1372460CTD or STD cast2014-11-18 09:15:0048.57127 N, 9.51102 WRRS Discovery DY018 (GApr04)
2120058Water sample data2014-11-18 09:19:0048.57127 N, 9.51102 WRRS Discovery DY018 (GApr04)
2121479Water sample data2014-11-18 09:19:0048.57127 N, 9.51102 WRRS Discovery DY018 (GApr04)
2127033Water sample data2014-11-18 09:19:0048.57127 N, 9.51102 WRRS Discovery DY018 (GApr04)
1372029CTD or STD cast2014-11-18 10:02:0048.57127 N, 9.51102 WRRS Discovery DY018 (GApr04)
1372030CTD or STD cast2014-11-18 12:11:0048.57123 N, 9.51103 WRRS Discovery DY018 (GApr04)
2117721Water sample data2014-11-18 12:21:3048.57125 N, 9.51104 WRRS Discovery DY018 (GApr04)
2119844Water sample data2014-11-18 12:21:3048.57125 N, 9.51104 WRRS Discovery DY018 (GApr04)
2126828Water sample data2014-11-18 12:21:3048.57125 N, 9.51104 WRRS Discovery DY018 (GApr04)
2136638Water sample data2014-11-18 12:21:3048.57125 N, 9.51104 WRRS Discovery DY018 (GApr04)
1372472CTD or STD cast2014-11-19 10:02:0048.57112 N, 9.5095 WRRS Discovery DY018 (GApr04)
2120071Water sample data2014-11-19 10:06:0048.57113 N, 9.50949 WRRS Discovery DY018 (GApr04)
2121480Water sample data2014-11-19 10:06:0048.57113 N, 9.50949 WRRS Discovery DY018 (GApr04)
2127045Water sample data2014-11-19 10:06:0048.57113 N, 9.50949 WRRS Discovery DY018 (GApr04)
1372042CTD or STD cast2014-11-19 12:17:0048.57113 N, 9.50952 WRRS Discovery DY018 (GApr04)
2117733Water sample data2014-11-19 12:27:0048.57112 N, 9.50949 WRRS Discovery DY018 (GApr04)
2119856Water sample data2014-11-19 12:27:0048.57112 N, 9.50949 WRRS Discovery DY018 (GApr04)
2126841Water sample data2014-11-19 12:27:0048.57112 N, 9.50949 WRRS Discovery DY018 (GApr04)
2136651Water sample data2014-11-19 12:27:0048.57112 N, 9.50949 WRRS Discovery DY018 (GApr04)
1372054CTD or STD cast2014-11-19 13:58:0048.57112 N, 9.50953 WRRS Discovery DY018 (GApr04)
1372066CTD or STD cast2014-11-20 02:11:0048.57352 N, 9.50627 WRRS Discovery DY018 (GApr04)
2117745Water sample data2014-11-20 02:21:3048.57351 N, 9.50628 WRRS Discovery DY018 (GApr04)
2126853Water sample data2014-11-20 02:21:3048.57351 N, 9.50628 WRRS Discovery DY018 (GApr04)
2136663Water sample data2014-11-20 02:21:3048.57351 N, 9.50628 WRRS Discovery DY018 (GApr04)
1372238CTD or STD cast2014-11-24 13:17:0048.571 N, 9.50945 WRRS Discovery DY018 (GApr04)
1372251CTD or STD cast2014-11-24 14:09:0048.571 N, 9.50947 WRRS Discovery DY018 (GApr04)
2119893Water sample data2014-11-24 14:12:3048.571 N, 9.50946 WRRS Discovery DY018 (GApr04)
1624461CTD or STD cast2015-03-24 05:51:0048.57065 N, 9.5093 WRRS Discovery DY021
2118091Water sample data2015-03-24 05:59:0048.57066 N, 9.5093 WRRS Discovery DY021
1626271CTD or STD cast2015-04-09 02:07:0048.57113 N, 9.51593 WRRS Discovery DY029 (GApr04)
1626283CTD or STD cast2015-04-09 07:07:0048.57117 N, 9.50992 WRRS Discovery DY029 (GApr04)
1626258CTD or STD cast2015-04-09 18:06:0048.5742 N, 9.50827 WRRS Discovery DY029 (GApr04)
2136780Water sample data2015-04-10 02:23:0048.57114 N, 9.50994 WRRS Discovery DY029 (GApr04)
2118299Water sample data2015-04-10 07:25:0048.57116 N, 9.5099 WRRS Discovery DY029 (GApr04)
1626523CTD or STD cast2015-04-17 07:09:0048.57188 N, 9.51053 WRRS Discovery DY029 (GApr04)
2118411Water sample data2015-04-17 07:14:3048.57057 N, 9.51103 WRRS Discovery DY029 (GApr04)
2136903Water sample data2015-04-17 07:14:3048.57057 N, 9.51103 WRRS Discovery DY029 (GApr04)
2118472Water sample data2015-04-24 02:23:3048.57129 N, 9.50945 WRRS Discovery DY029 (GApr04)
2136940Water sample data2015-04-24 02:23:3048.57129 N, 9.50945 WRRS Discovery DY029 (GApr04)
1626812CTD or STD cast2015-04-24 02:41:0048.57132 N, 9.50962 WRRS Discovery DY029 (GApr04)
1627378CTD or STD cast2015-04-24 05:43:0048.52172 N, 9.45178 WRRS Discovery DY029 (GApr04)
1626824CTD or STD cast2015-04-24 09:04:0048.60553 N, 9.44478 WRRS Discovery DY029 (GApr04)
2118484Water sample data2015-04-24 13:35:3048.5697 N, 9.50944 WRRS Discovery DY029 (GApr04)
2136952Water sample data2015-04-24 13:35:3048.5697 N, 9.50944 WRRS Discovery DY029 (GApr04)
1626836CTD or STD cast2015-04-24 13:49:0048.56968 N, 9.50942 WRRS Discovery DY029 (GApr04)
1626848CTD or STD cast2015-04-24 15:45:0048.5666 N, 9.50927 WRRS Discovery DY029 (GApr04)
1627391CTD or STD cast2015-04-24 16:27:0048.56667 N, 9.50933 WRRS Discovery DY029 (GApr04)
1626861CTD or STD cast2015-04-24 17:25:0048.56647 N, 9.50928 WRRS Discovery DY029 (GApr04)
1624983CTD or STD cast2015-05-22 14:55:0048.57023 N, 9.5104 WRRS Discovery DY030
2132545Water sample data2015-05-22 15:11:0048.57023 N, 9.51038 WRRS Discovery DY030
2137838Water sample data2015-05-22 15:11:0048.57023 N, 9.51038 WRRS Discovery DY030
1624645CTD or STD cast2015-05-22 16:13:0048.57023 N, 9.5104 WRRS Discovery DY030
2123413Water sample data2015-05-22 16:26:3048.57023 N, 9.51039 WRRS Discovery DY030
1625199CTD or STD cast2015-07-19 01:15:0048.57085 N, 9.5098 WRRS Discovery DY033 (GApr04)
2118693Water sample data2015-07-19 01:21:3048.57086 N, 9.5099 WRRS Discovery DY033 (GApr04)
2120279Water sample data2015-07-19 01:21:3048.57086 N, 9.5099 WRRS Discovery DY033 (GApr04)
2123566Water sample data2015-07-19 01:21:3048.57086 N, 9.5099 WRRS Discovery DY033 (GApr04)
2137931Water sample data2015-07-19 01:21:3048.57086 N, 9.5099 WRRS Discovery DY033 (GApr04)
1625206CTD or STD cast2015-07-19 11:05:0048.57113 N, 9.50987 WRRS Discovery DY033 (GApr04)
2123578Water sample data2015-07-19 11:17:0048.57115 N, 9.50986 WRRS Discovery DY033 (GApr04)
2137943Water sample data2015-07-19 11:17:0048.57115 N, 9.50986 WRRS Discovery DY033 (GApr04)
1625218CTD or STD cast2015-07-19 15:50:0048.57122 N, 9.50985 WRRS Discovery DY033 (GApr04)
1625231CTD or STD cast2015-07-20 02:12:0048.57083 N, 9.50967 WRRS Discovery DY033 (GApr04)
2118700Water sample data2015-07-20 02:24:0048.57092 N, 9.50971 WRRS Discovery DY033 (GApr04)
2123591Water sample data2015-07-20 02:24:0048.57092 N, 9.50971 WRRS Discovery DY033 (GApr04)
2137955Water sample data2015-07-20 02:24:0048.57092 N, 9.50971 WRRS Discovery DY033 (GApr04)
1625685CTD or STD cast2015-07-20 03:29:0048.57083 N, 9.50967 WRRS Discovery DY033 (GApr04)
2120440Water sample data2015-07-20 03:39:0048.57093 N, 9.50975 WRRS Discovery DY033 (GApr04)
2123947Water sample data2015-07-20 03:39:0048.57093 N, 9.50975 WRRS Discovery DY033 (GApr04)
1625243CTD or STD cast2015-07-20 05:18:0048.57083 N, 9.50967 WRRS Discovery DY033 (GApr04)
1625255CTD or STD cast2015-07-20 10:04:0048.5711 N, 9.5093 WRRS Discovery DY033 (GApr04)
2120280Water sample data2015-07-20 11:15:0048.5711 N, 9.50929 WRRS Discovery DY033 (GApr04)
2123609Water sample data2015-07-20 11:15:0048.5711 N, 9.50929 WRRS Discovery DY033 (GApr04)
2137967Water sample data2015-07-20 11:15:0048.5711 N, 9.50929 WRRS Discovery DY033 (GApr04)
1625267CTD or STD cast2015-07-20 15:26:0048.57107 N, 9.50897 WRRS Discovery DY033 (GApr04)
2119752Water sample data2015-08-31 08:42:3048.57077 N, 9.50961 WRRS Discovery DY034
2122317Water sample data2015-08-31 10:10:0048.57082 N, 9.51127 WRRS Discovery DY034