Search the data

Metadata Report for BODC Series Reference Number 1371585


Metadata Summary

Data Description

Data Category CTD or STD cast
Instrument Type
NameCategories
Sea-Bird SBE 911 CTD  CTD; water temperature sensor; salinity sensor
Sea-Bird SBE 43 Dissolved Oxygen Sensor  dissolved gas sensors
Chelsea Technologies Group Aquatracka fluorometer  fluorometers
Chelsea Technologies Group 2-pi PAR irradiance sensor  radiometers
WET Labs {Sea-Bird WETLabs} ECO BB(RT)D backscattering sensor  optical backscatter sensors
Paroscientific 410K Pressure Transducer  water temperature sensor; water pressure sensors
Sea-Bird SBE 3plus (SBE 3P) temperature sensor  water temperature sensor
Sea-Bird SBE 4C conductivity sensor  salinity sensor
Chelsea Technologies Group Aquatracka III fluorometer  fluorometers
Instrument Mounting lowered unmanned submersible
Originating Country United Kingdom
Originator Dr Jo Hopkins
Originating Organization National Oceanography Centre, Liverpool
Processing Status banked
Online delivery of data Download available - Ocean Data View (ODV) format
Project(s) Shelf Sea Biogeochemistry (SSB)
SSB CaNDyFloSS
 

Data Identifiers

Originator's Identifier DY008_CAST011_STNNBR_78
BODC Series Reference 1371585
 

Time Co-ordinates(UT)

Start Time (yyyy-mm-dd hh:mm) 2014-03-28 15:49
End Time (yyyy-mm-dd hh:mm) -
Nominal Cycle Interval 1.0 decibars
 

Spatial Co-ordinates

Latitude 48.57113 N ( 48° 34.3' N )
Longitude 9.51270 W ( 9° 30.8' W )
Positional Uncertainty 0.0 to 0.01 n.miles
Minimum Sensor or Sampling Depth 6.94 m
Maximum Sensor or Sampling Depth 197.22 m
Minimum Sensor or Sampling Height 6.78 m
Maximum Sensor or Sampling Height 197.06 m
Sea Floor Depth 204.0 m
Sea Floor Depth Source DATAHEAD
Sensor or Sampling Distribution Variable common depth - All sensors are grouped effectively at the same depth, but this depth varies significantly during the series
Sensor or Sampling Depth Datum Instantaneous - Depth measured below water line or instantaneous water body surface
Sea Floor Depth Datum Instantaneous - Depth measured below water line or instantaneous water body surface
 

Parameters

BODC CODERankUnitsTitle
ACYCAA011DimensionlessSequence number
ATTNMR011per metreAttenuation (red light wavelength) per unit length of the water body by 20 or 25cm path length transmissometer
BB117R011per metre per nanometre per steradianAttenuation due to backscatter (660 nm wavelength at 117 degree incidence) by the water body [particulate >unknown phase] by in-situ optical backscatter measurement
CNDCST011Siemens per metreElectrical conductivity of the water body by CTD
CPHLPS011Milligrams per cubic metreConcentration of chlorophyll-a {chl-a CAS 479-61-8} per unit volume of the water body [particulate >unknown phase] by in-situ chlorophyll fluorometer and calibration against sample data
DOXYZZ011Micromoles per litreConcentration of oxygen {O2 CAS 7782-44-7} per unit volume of the water body [dissolved plus reactive particulate phase] by in-situ sensor
DWIRPP011Watts per square metreDownwelling 2-pi scalar irradiance as energy of electromagnetic radiation (PAR wavelengths) in the water body by 2-pi scalar radiometer
OXYSZZ011PercentSaturation of oxygen {O2 CAS 7782-44-7} in the water body [dissolved plus reactive particulate phase]
POTMCV011Degrees CelsiusPotential temperature of the water body by computation using UNESCO 1983 algorithm
PRESPR011DecibarsPressure (spatial coordinate) exerted by the water body by profiling pressure sensor and correction to read zero at sea level
PSALST011DimensionlessPractical salinity of the water body by CTD and computation using UNESCO 1983 algorithm
SIGTPR011Kilograms per cubic metreSigma-theta of the water body by CTD and computation from salinity and potential temperature using UNESCO algorithm
TEMPST011Degrees CelsiusTemperature of the water body by CTD or STD

Definition of Rank

  • Rank 1 is a one-dimensional parameter
  • Rank 2 is a two-dimensional parameter
  • Rank 0 is a one-dimensional parameter describing the second dimension of a two-dimensional parameter (e.g. bin depths for moored ADCP data)

Problem Reports

No Problem Report Found in the Database


Data Access Policy

Open Data

These data have no specific confidentiality restrictions for users. However, users must acknowledge data sources as it is not ethical to publish data without proper attribution. Any publication or other output resulting from usage of the data should include an acknowledgment.

If the Information Provider does not provide a specific attribution statement, or if you are using Information from several Information Providers and multiple attributions are not practical in your product or application, you may consider using the following:

"Contains public sector information licensed under the Open Government Licence v1.0."


Narrative Documents

Sea-Bird Dissolved Oxygen Sensor SBE 43 and SBE 43F

The SBE 43 is a dissolved oxygen sensor designed for marine applications. It incorporates a high-performance Clark polarographic membrane with a pump that continuously plumbs water through it, preventing algal growth and the development of anoxic conditions when the sensor is taking measurements.

Two configurations are available: SBE 43 produces a voltage output and can be incorporated with any Sea-Bird CTD that accepts input from a 0-5 volt auxiliary sensor, while the SBE 43F produces a frequency output and can be integrated with an SBE 52-MP (Moored Profiler CTD) or used for OEM applications. The specifications below are common to both.

Specifications

Housing Plastic or titanium
Membrane

0.5 mil- fast response, typical for profile applications

1 mil- slower response, typical for moored applications

Depth rating

600 m (plastic) or 7000 m (titanium)

10500 m titanium housing available on request

Measurement range 120% of surface saturation
Initial accuracy 2% of saturation
Typical stability 0.5% per 1000 h

Further details can be found in the manufacturer's specification sheet.

Instrument Description for DY008 CTD

CTD Unit and Auxiliary Sensors

The CTD unit comprised a Sea-Bird Electronics (SBE) 9plus underwater unit, an SBE 11plus deck unit, a 24-way SBE 32 carousel and 24 10 L TMF Water Samplers; all of which were mounted on a titanium 24-way CTD frame. Attached to the CTD were two SBE 3P temperature sensors, two SBE 4C conductivity sensors, one Paroscientific Digiquartz pressure sensor, one SBE 43 dissolved oxygen sensor, one Chelsea Technology Group (CTG) 2-π PAR sensor, one WETLabs BBRTD light scattering sensor, one Benthos 916T altimeter one CTG Aquatracka MKIII fluorometer and one CTG Alphatracka MKII transmissometer. The WETLabs BBRTD gave suspect readings during the first three deployments, so it was replaced by a backup instrument between casts three and four. The altimeter cable was also replaced at the same time as it gave erratic readings during casts one to three.

Sensor unit Model Serial number Full specification Calibration dates (YYYY/MM/DD) Comments
CTD underwater unit SBE 9plus 09P-71442-1142 (Ti) SBE 9plus - -
CTD deck unit SBE 11plus 11P-34173-0676 - - -
Carousel SBE 32 - 24 Position Pylon 32-37898-0518 SBE 32 - -
Pressure sensor Paroscientific Digiquartz 124216 Paroscientific Digiquartz 2013-03-12 -
Temperature sensor SBE 3P 3P-5494 (Ti) SBE 03P 2013-10-18 -
Temperature sensor SBE 3P 3P-5785 (Ti) - 2013-02-28 -
Conductivity senor SBE 4C 4C-2164 (Ti) SBE 04C 2013-08-07 -
Conductivity sensor SBE 4C 4C-4140 (Ti) - 2013-02-21 -
Dissolved oxygen sensor SBE 43 43-2055 SBE 43 2013-07-23 -
Altimeter Benthos PSA 916T 59493 Benthos Altimeter - -
Irradiance sensor (DWIRR) CTG 2-π PAR PAR 04 (Ti) CTG 2-π PAR 2013-11-21 Measuring downwelling irradiance
Light scattering sensor WETLabs BBRTD Casts 1-3: 1055Casts 4-14: 182 WETLabs BBRTD 2013-03-132013-09-05 -
Fluorometer Chelsea MKIII Aquatracka 88-2615-124 Chelsea MKII Aquatracka 2012-10-19 -
Transmissometer Chelsea MKII Alphatracka - 25 cm path 07-6075-001 Alphatracka MKII 2012-05-08 -

Sea-Bird Electronics SBE 911 and SBE 917 series CTD profilers

The SBE 911 and SBE 917 series of conductivity-temperature-depth (CTD) units are used to collect hydrographic profiles, including temperature, conductivity and pressure as standard. Each profiler consists of an underwater unit and deck unit or SEARAM. Auxiliary sensors, such as fluorometers, dissolved oxygen sensors and transmissometers, and carousel water samplers are commonly added to the underwater unit.

Underwater unit

The CTD underwater unit (SBE 9 or SBE 9 plus) comprises a protective cage (usually with a carousel water sampler), including a main pressure housing containing power supplies, acquisition electronics, telemetry circuitry, and a suite of modular sensors. The original SBE 9 incorporated Sea-Bird's standard modular SBE 3 temperature sensor and SBE 4 conductivity sensor, and a Paroscientific Digiquartz pressure sensor. The conductivity cell was connected to a pump-fed plastic tubing circuit that could include auxiliary sensors. Each SBE 9 unit was custom built to individual specification. The SBE 9 was replaced in 1997 by an off-the-shelf version, termed the SBE 9 plus, that incorporated the SBE 3 plus (or SBE 3P) temperature sensor, SBE 4C conductivity sensor and a Paroscientific Digiquartz pressure sensor. Sensors could be connected to a pump-fed plastic tubing circuit or stand-alone.

Temperature, conductivity and pressure sensors

The conductivity, temperature, and pressure sensors supplied with Sea-Bird CTD systems have outputs in the form of variable frequencies, which are measured using high-speed parallel counters. The resulting count totals are converted to numeric representations of the original frequencies, which bear a direct relationship to temperature, conductivity or pressure. Sampling frequencies for these sensors are typically set at 24 Hz.

The temperature sensing element is a glass-coated thermistor bead, pressure-protected inside a stainless steel tube, while the conductivity sensing element is a cylindrical, flow-through, borosilicate glass cell with three internal platinum electrodes. Thermistor resistance or conductivity cell resistance, respectively, is the controlling element in an optimized Wien Bridge oscillator circuit, which produces a frequency output that can be converted to a temperature or conductivity reading. These sensors are available with depth ratings of 6800 m (aluminium housing) or 10500 m (titanium housing). The Paroscientific Digiquartz pressure sensor comprises a quartz crystal resonator that responds to pressure-induced stress, and temperature is measured for thermal compensation of the calculated pressure.

Additional sensors

Optional sensors for dissolved oxygen, pH, light transmission, fluorescence and others do not require the very high levels of resolution needed in the primary CTD channels, nor do these sensors generally offer variable frequency outputs. Accordingly, signals from the auxiliary sensors are acquired using a conventional voltage-input multiplexed A/D converter (optional). Some Sea-Bird CTDs use a strain gauge pressure sensor (Senso-Metrics) in which case their pressure output data is in the same form as that from the auxiliary sensors as described above.

Deck unit or SEARAM

Each underwater unit is connected to a power supply and data logging system: the SBE 11 (or SBE 11 plus) deck unit allows real-time interfacing between the deck and the underwater unit via a conductive wire, while the submersible SBE 17 (or SBE 17 plus) SEARAM plugs directly into the underwater unit and data are downloaded on recovery of the CTD. The combination of SBE 9 and SBE 17 or SBE 11 are termed SBE 917 or SBE 911, respectively, while the combinations of SBE 9 plus and SBE 17 plus or SBE 11 plus are termed SBE 917 plus or SBE 911 plus.

Specifications

Specifications for the SBE 9 plus underwater unit are listed below:

Parameter Range Initial accuracy Resolution at 24 Hz Response time
Temperature -5 to 35°C 0.001°C 0.0002°C 0.065 sec
Conductivity 0 to 7 S m-1 0.0003 S m-1 0.00004 S m-1 0.065 sec (pumped)
Pressure 0 to full scale (1400, 2000, 4200, 6800 or 10500 m) 0.015% of full scale 0.001% of full scale 0.015 sec

Further details can be found in the manufacturer's specification sheet.

Aquatracka fluorometer

The Chelsea Instruments Aquatracka is a logarithmic response fluorometer. It uses a pulsed (5.5 Hz) xenon light source discharging between 320 and 800 nm through a blue filter with a peak transmission of 420 nm and a bandwidth at half maximum of 100 nm. A red filter with sharp cut off, 10% transmission at 664 nm and 678 nm, is used to pass chlorophyll-a fluorescence to the sample photodiode.

The instrument may be deployed either in a through-flow tank, on a CTD frame or moored with a data logging package.

Further details can be found in the manufacturer's specification sheet.

Chelsea Technologies Group Aquatracka MKIII fluorometer

The Chelsea Technologies Group Aquatracka MKIII is a logarithmic response fluorometer. Filters are available to enable the instrument to measure chlorophyll, rhodamine, fluorescein and turbidity.

It uses a pulsed (5.5 Hz) xenon light source discharging along two signal paths to eliminate variations in the flashlamp intensity. The reference path measures the intensity of the light source whilst the signal path measures the intensity of the light emitted from the specimen under test. The reference signal and the emitted light signals are then applied to a ratiometric circuit. In this circuit, the ratio of returned signal to reference signal is computed and scaled logarithmically to achieve a wide dynamic range. The logarithmic conversion accuracy is maintained at better than one percent of the reading over the full output range of the instrument.

Two variants of the instrument are available, both manufactured in titanium, capable of operating in depths from shallow water down to 2000 m and 6000 m respectively. The optical characteristics of the instrument in its different detection modes are visible below:

Excitation Chlorophyll a Rhodamine Fluorescein Turbidity
Wavelength (nm) 430 500 485 440*
Bandwidth (nm) 105 70 22 80*
Emission Chlorophyll a Rhodamine Fluorescein Turbidity
Wavelength (nm) 685 590 530 440*
Bandwidth (nm) 30 45 30 80*

* The wavelengths for the turbidity filters are customer selectable but must be in the range 400 to 700 nm. The same wavelength is used in the excitation path and the emission path.

The instrument measures chlorophyll a, rhodamine and fluorescein with a concentration range of 0.01 µg l-1 to 100 µg l-1. The concentration range for turbidity is 0.01 to 100 FTU (other wavelengths are available on request).

The instrument accuracy is ± 0.02 µg l-1 (or ± 3% of the reading, whichever is greater) for chlorophyll a, rhodamine and fluorescein. The accuracy for turbidity, over a 0 - 10 FTU range, is ± 0.02 FTU (or ± 3% of the reading, whichever is greater).

Further details are available from the Aquatracka MKIII specification sheet.

Chelsea Technologies Photosynthetically Active Radiation (PAR) Irradiance Sensor

This sensor was originally designed to assist the study of marine photosynthesis. With the use of logarithmic amplication, the sensor covers a range of 6 orders of magnitude, which avoids setting up the sensor range for the expected signal level for different ambient conditions.

The sensor consists of a hollow PTFE 2-pi collector supported by a clear acetal dome diverting light to a filter and photodiode from which a cosine response is obtained. The sensor can be used in moorings, profiling or deployed in towed vehicles and can measure both upwelling and downwelling light.

Specifications

Operation depth 1000 m
Range 2000 to 0.002 µE m-2 s-1
Angular Detection Range ± 130° from normal incidence
Relative Spectral Sensitivity

flat to ± 3% from 450 to 700 nm

down 8% of 400 nm and 36% at 350 nm

Further details can be found in the manufacturer's specification sheet.

WETLabs Single-angle Backscattering Meter ECO BB

An optical scattering sensor that measures scattering at 117°. This angle was determined as a minimum convergence point for variations in the volume scattering function induced by suspended materials and water. The measured signal is less determined by the type and size of the materials in the water and is more directly correlated to their concentration.

Several versions are available, with minor differences in their specifications:

  • ECO BB(RT)provides analog or RS-232 serial output with 4000 count range
  • ECO BB(RT)D adds the possibility of being deployed in depths up to 6000 m while keeping the capabilities of ECO BB(RT)
  • ECO BB provides the capabilities of ECO BB(RT) with periodic sampling
  • ECO BBB is similar to ECO BB but with internal batteries for autonomous operation
  • ECO BBS is similar to ECO BB but with an integrated anti-fouling bio-wiper
  • ECO BBSB has the capabilities of ECO BBS but with internal batteries for autonomous operation

Specifications

Wavelength 471, 532, 660 nm
Sensitivity (m-1 sr-1)

1.2 x 10-5 at 470 nm

7.7 x 10-6 at 532 nm

3.8 x 10-6 at 660 nm

Typical range ~0.0024 to 5 m-1
Linearity 99% R2
Sample rate up to 8Hz
Temperature range 0 to 30°C
Depth rating

600 m (standard)

6000 m (deep)

Further details can be found in the manufacturer's specification sheet.

Paroscientific Absolute Pressure Transducers Series 3000 and 4000

Paroscientific Series 3000 and 4000 pressure transducers use a Digiquartz pressure sensor to provide high accuracy and precision data. The sensor comprises a quartz crystal resonator that responds to pressure-induced stress, and temperature is measured for thermal compensation of the calculated pressure.

The 3000 series of transducers includes one model, the 31K-101, whereas the 4000 series includes several models, listed in the table below. All transducers exhibit repeatability of better than ±0.01% full pressure scale, hysteresis of better than ±0.02% full scale and acceleration sensitivity of ±0.008% full scale /g (three axis average). Pressure resolution is better than 0.0001% and accuracy is typically 0.01% over a broad range of temperatures.

Differences between the models lie in their pressure and operating temperature ranges, as detailed below:

Model Max. pressure (psia) Max. pressure (MPa) Temperature range (°C)
31K-101 1000 6.9 -54 to 107
42K-101 2000 13.8 0 to 125
43K-101 3000 20.7 0 to 125
46K-101 6000 41.4 0 to 125
410K-101 10000 68.9 0 to 125
415K-101 15000 103 0 to 50
420K-101 20000 138 0 to 50
430K-101 30000 207 0 to 50
440K-101 40000 276 0 to 50

Further details can be found in the manufacturer's specification sheet.

Originator's processing document for DY008 CTD data

Sampling strategy

A total of 14 CTD casts were performed during DY008 which sailed from Southampton on 18 March 2014 and docked in Southampton on 13 April 2014, and was tasked with investigating the benthic work package (Work Package II) of the Shelf Seas Biogeochemistry project in the Celtic Sea.

Data Processing

For each CTD cast the following raw data files were generated:

  • DY008_XYZ.bl (a record of bottle firing locations)
  • DY008_XYZ.hdr (header file)
  • DY008_XYZ.hex (raw data file)
  • DY008_XYZ.con (configuration file)

where XYZ is the cast number of the CTD data series.

The following processing was performed by the Originator using the SBE Data Processing software (Seasave Version 7.23.2):

  1. DatCnv was used to read in the raw CTD data file (.hex) which contained the data in engineering units and apply calibrations as appropriate through the instrument configurations (.con) file.
  2. Bottle Summary was run to create a .btl file containing the average, standard deviation, min and max values recorded by the CTD instrument suite at bottle firings.
  3. Wild Edit was run to remove spikes in the pressure channel.
  4. Filter was run on the pressure channel to smooth out the high frequency data
  5. After examining the data recorded during four casts (one, two, seven and 14) the originator used AlignCTD to advance the oxygen data by two seconds. AlignCTD was also used to move the conductivity data backwards by one scan (0.0417 seconds), as after testing several values this adjustment resulted in the fewest number of spikes in the salinity channel.
  6. CellTM was run using alpha = 0.03 and 1/beta = 7, to correct for conductivity errors induced by the transfer of heat from the conductivity cell to the seawater.
  7. Derive was run to create the variables Salinity, Salinity 2, Oxygen SBE 43 and Oxygen Tau correction. The output file was then saved as DY008_XYZ_derive.cnv.
  8. BinAverage and Strip were run to average the data to 2Hz bins (0.5 seconds) and to remove the salinity and oxygen channels which were created when Derive was run. The output file was then saved as DY008_XYZ_derive_2Hz.cnv.

The originator then proceeded to process the data further in Matlab.

  1. The data from the 2HZ and 24HZ processed CTD data files were extracted and combined with metadata from the Event log to create .mat files for each series at both 2HZ and 24 HZ resolutions.
  2. Inspection of the raw turbidity data revealed that there was a bug in the Seasave DatCnv conversion module which resulted in it incorrectly converting the raw turbidity voltage into m-1 sr-1. Therefore, the originator re-derived turbidity manually using the following equation (SF = scale factor, DC = dark counts):

    CTDturb = CTDturb_raw x SF - (SF x DC)

  3. The originator manually inspected the 2Hz data files to identify the surface soak and then cropped the 2Hz and 24Hz data files to remove the surface soak from the data.
  4. The salinity, conductivity, temperature, oxygen, attenuation, turbidity and fluorescence channels in the 24Hz data files were all de-spiked using an automated routine, with the originator converting the spikes to NaN (not a number) values.
  5. Further manual de-spiking was carried out to identify larger periods of bad data.
  6. The 24Hz data were averaged into one decibar downcast only bins and liner interpolation was used to fill gaps in the profile.
  7. All channels except PAR were smoothed further using a 10 m running median.
  8. The salinity data were then calibrated using salinity samples collected by the CTD water bottles and analysed on a Guildline Autosal salinometer. The chlorophyll fluresence data were calibrated against CTD chlorophyll samples.
  9. It was this calibrated version of the data which were then ingested by BODC, although all other versions have been archived and are available on request.

Field Calibrations

Salinity

29 usable salinity samples were collected from CTD water bottle samples during DY008 and analysed on a Guildline Autosal salinometer (SN 71126). Using all samples the mean and standard deviation of residuals from the primary and secondary sensors were calculated as 0.0018586 ± 0.0020348 and 0.0043345 ± 0.0021767 respectively. After removing the outliers where the difference between Autosal and CTD values was greater than two standard deviations, the mean for the primary and secondary sensors was reduced to 0.0013423 ± 0.001392 and 0.0039815 ± 0.0017942 respectively. These mean values were then used to correct the CTD salinity channels.

Chlorophyll

A total of 24 samples were collected from CTD water bottle samples to calibrate the chlorophyll flurometer. The originator used a linear regression to calibrate the chlorophyll fluorometer against the 39 chlorophyll samples, with the following calibration equation being used to calibrate the fluorometer:

CHL = 3.0178 x CTDfluor - 0.13846

R2 = 0.87469

More information on the processing carried out and calibrations applied by the data originator the can be found in the data originator's CTD Processing Report.

Processing by BODC of RRS Discovery DY008 CTD data

Several versions of the CTD data recorded during DY008 arrived at BODC in the form of ASCII and Matlab (.MAT) files. In addition to the raw CTD data, BODC were provided with the 24 Hz and 2 Hz versions created at the end of the originator's Seasave processing and at each subsequent stage of Matlab processing. The fully calibrated CTD data binned to 1db downcast bins were then reformatted to BODC's internal NetCDF format. The following table shows the mapping of the originator's variables to the appropriate BODC parameter codes:

Originator's Variable Units Description BODC Parameter Code Units Comment
pres db Pressure (spatial co-ordinate) exerted by the water body by profiling pressure sensor and corrected to read zero at sea level PRESPR01 Decibars -
time elapsed [seconds] - - - This variable was not transferred
temp1 ITS-90, deg C Temperature of the water body TEMPPR01 °C -
temp2 ITS-90, deg C - - - This parameter was transferred then dropped following screening as there was no difference between the quality of the data from the first and second temperature sensors
cond1 S m-1 Electrical conductivity of the water body by CTD CNDCST01 S m-1 -
cond2 S m-1 - - - This parameter was transferred then dropped following screening as there was no difference between the quality of the data from the first and second temperature sensors
sal1 PSU, PSS-78 Practical salinity of the water body by CTD and computation using UNESCO 1983 algorithm PSALST01 Dimensionless Derived from temp1 and cond1
sal2 PSU, PSS-78 - - - This parameter was transferred then dropped following screening as there was no difference between the quality of the data from the first and second temperature sensors
oxy_umoll µ mol l-1 Concentration of oxygen {O2 CAS 7782-44-7} per unit volume of the water body [dissolved plus reactive particulate phase] by in-situ sensor DOXYZZ01 µ mol l-1 -
fluor µ g l-1 Concentration of chlorophyll-a {chl-a CAS479-61-8} per unit volume of the water body [particulate >unknown phase] by in-situ chlorophyll fluorometer and calibration against sample data CPHLPS01 mg m-3 µ g l-1 = mg m-3
par W m-2 Downwelling 2-pi scalar irradiance as energy (PAR wavelengths) in the water body by 2-pi scalar radiometer DWIRPP01 W m-2 -
att m -1 Attenuance (red light wavelength) per unit length of the water body by 20 or 25cm path length transmissometer ATTNMR01 m -1 -
sigma_theta - - - - This variable was not transferred. BODC independently derive density during transfer
turb m-1 sr-1 Attenuance due to backscatter (660 nm wavelength at 117 degree incidence) by the water body [particulate >unknown phase] by in-situ optical backscatter measurement BB117R01 m-1 nm -1 sr-1 Casts 04 to 14 only. m-1 sr-1 = m-1 nm -1 sr-1
turb m-1 sr-1 Attenuance due to backscatter (650 nm wavelength at 117 degree incidence) by the water body [particulate >unknown phase] by in-situ optical backscatter measurement BB117R02 m-1 nm -1 sr-1 Casts 01 to 03 only. m-1 sr-1 = m-1 nm -1 sr-1

The following additional parameters were derived when the data were converted into QXF format:

Originator's Variable Units Description BODC Parameter Code Units Comment
- - Potential temperature of the water body by computation using UNESCO 1983 algorithm POTMCV01 °C Derived from TEMPPR01, PSALST01 and PRESPR01
- - Sigma-theta of the water body by CTD and computation from salinity and potential temperature using UNESCO algorithm SIGTPR01 kg m-3 Derived from POTMCV01, PSALST01 and PRESPR01
- - Saturation of oxygen {O2} in the water body [dissolved plus reactive particulate phase] OXYSZZ01 % Derived from TEMPST01, PSALST01 and DOXYZZ01

The reformatted data were visualised using the in-house EDSERPLO software. Suspect data were marked by adding an appropriate quality control flag, and missing data by setting the data to an appropriate value and applying the quality control flag.


Project Information

Shelf Sea Biogeochemistry (SSB) Programme

Shelf Sea Biogeochemistry (SSB) is a £10.5 million, six-year (2011-2017) research programme, jointly funded by the Natural Environment Research Council (NERC) and the Department for Environment, Food and Rural Affairs (DEFRA). The aim of the research is to reduce the uncertainty in our understanding of nutrient and carbon cycling within the shelf seas, and of their role in global biogeochemical cycles. SSB will also provide effective policy advice and make a significant contribution to the Living with Environmental Change programme.

Background

The Shelf Sea Biogeochemistry research programme directly relates to the delivery of the NERC Earth system science theme and aims to provide evidence that supports a number of marine policy areas and statutory requirements, such as the Marine Strategy Framework Directive and Marine and Climate Acts.

The shelf seas are highly productive compared to the open ocean, a productivity that underpins more than 90 per cent of global fisheries. Their importance to society extends beyond food production to include issues of biodiversity, carbon cycling and storage, waste disposal, nutrient cycling, recreation and renewable energy resources.

The shelf seas have been estimated to be the most valuable biome on Earth, but they are under considerable stress, as a result of anthropogenic nutrient loading, overfishing, habitat disturbance, climate change and other impacts.

However, even within the relatively well-studied European shelf seas, fundamental biogeochemical processes are poorly understood. For example: the role of shelf seas in carbon storage; in the global cycles of key nutrients (nitrogen, phosphorus, silicon and iron); and in determining primary and secondary production, and thereby underpinning the future delivery of many other ecosystem services.

Improved knowledge of such factors is not only required by marine policymakers; it also has the potential to increase the quality and cost-effectiveness of management decisions at the local, national and international levels under conditions of climate change.

The Shelf Sea Biogeochemistry research programme will take a holistic approach to the cycling of nutrients and carbon and the controls on primary and secondary production in UK and European shelf seas, to increase understanding of these processes and their role in wider biogeochemical cycles. It will thereby significantly improve predictive marine biogeochemical and ecosystem models over a range of scales.

The scope of the programme includes exchanges with the open ocean (transport on and off the shelf to a depth of around 500m), together with cycling, storage and release processes on the shelf slope, and air-sea exchange of greenhouse gases (carbon dioxide and nitrous oxide).

Further details are available on the SSB website.

Participants

15 different organisations are directly involved in research for SSB. These institutions are

  • Centre for Environment, Fisheries and Aquaculture Science (Cefas)
  • Meteorological Office
  • National Oceanography Centre (NOC)
  • Plymouth Marine Laboratory (PML)
  • Scottish Association for Marine Science (SAMS) / Scottish Marine Institute (SMI)
  • University of Aberdeen
  • University of Bangor
  • University of East Anglia (UEA)
  • University of Edinburgh
  • University of Essex
  • University of Liverpool
  • University of Oxford
  • Plymouth University
  • University of Portsmouth
  • University of Southampton

In addition, there are third party institutions carrying out sampling work for SSB, but who are not involved in the programme itself. These are:

  • The Agri-Food and Biosciences Institute (AFBI)
  • Irish Marine Institute (MI)
  • Marine Science Scotland (MSS)

Research details

Overall, five Work Packages have been funded by the SSB programme. These are described in brief below:

  • Work Package 1: Carbon and Nutrient Dynamics and Fluxes over Shelf Systems (CaNDyFloSS).
    This work package aims to perform a comprehensive study of the cycling of nutrients and carbon throughout the water column over the whole north-west European shelf. This will allow the fluxes of nutrients and carbon between the shelf and the deep ocean and atmosphere to be quantified, establishing the role of the north-west European continental shelf in the global carbon cycle.

  • Work Package 2: Biogeochemistry, macronutrient and carbon cycling in the benthic layer.
    This work package aims are to map the sensitivity and status of seabed habitats, based on physical conditions, ecological community structure and the size and dynamics of the nitrogen and carbon pools found there. This information will be used, in conjunction with some laboratory-based work, to generate an understanding of the potential impacts on the benthic community as a result of changing environmental conditions, such as rising CO2 levels.

  • Work Package 3: The supply of iron from shelf sediments to the ocean.
    The research for this work package addresses the question of how currents, tides, weather and marine chemistry allow new iron to be transported away from the shallow shelf waters around the United Kingdom (UK), to the nearby open ocean. This will ultimately allow an improved understanding of how the transport of iron in shelf waters and shelf sediments influences phytoplankton growth in open oceans. This in turn improves the understanding of carbon dioxide uptake by phytoplankton.

  • Work Package 4: Integrative modelling for Shelf Seas Biogeochemistry.
    The aim of this work package is the development of a new shelf seas biogeochemical model system, coupled to a state of the art physical model, that is capable of predicting regional impacts of environmental change of timescales from days to decades. It is envisaged that the combination of predictive tools and new knowledge developed in this work package will underpin development and implementation of marine policy and marine forecasting systems.

  • Work Package 5: Data synthesis and management of marine and coastal carbon (DSMMAC).
    This work package is funded by Defra and is also known by the name 'Blue Carbon'. The aim is to provide a process-based, quantitative assessment of the role of UK coastal waters and shelf seas in carbon storage and release, using existing data and understanding, and also emerging results from SSB fieldwork, experiments and modelling. Particular emphasis will be given to processes that may be influenced by human activities, and hence the opportunity for management interventions to enhance carbon sequestration.

Fieldwork and data collection

The campaign consists of the core cruises in the table below, to the marine shelf (and shelf-edge) of the Celtic Sea on board the NERC research vessels RRS Discovery and RRS James Cook. These cruises will focus on the physics and biogeochemistry of the benthic and pelagic zones of the water column, primarily around four main sampling sites in this area.

Cruise identifier Research ship Cruise dates Work packages
DY008 RRS Discovery March 2014 WP 2 and WP 3
JC105 RRS James Cook June 2014 WP 1, WP 2 and WP 3
DY026 RRS Discovery August 2014 WP1, WP 2 and WP 3
DY018 RRS Discovery November - December 2014 WP 1 and WP 3
DY021 (also known as DY008b) RRS Discovery March 2015 WP 2 and WP 3
DY029 RRS Discovery April 2015 WP 1 and WP 3
DY030 RRS Discovery May 2015 WP 2 and WP 3
DY033 RRS Discovery July 2015 WP 1 and WP 3
DY034 RRS Discovery August 2015 WP 2 and WP 3

Core cruises will be supplemented by partner cruises led by Cefas, MI, MSS, Bangor University and AFBI, spanning the shelf seas and shelf-edges around United Kingdom and Republic of Ireland.

Activities will include coring, Conductivity Temperature and Depth (CTD) deployments, Acoustic Doppler Current Profilers (ADCP) surveys, moorings and wire-walker deployments, benthic lander observatories, autonomous gliders and submersible surveys, Marine Snow Catcher particulate matter analysis, plankton net hauls, in-situ sediment flume investigations and laboratory incubations with core and sea water samples.


Shelf Sea Biogeochemistry (SSB) Programme Work Package 1: CaNDyFloSS

Carbon and Nutrient Dynamics and Fluxes over Shelf Systems (CaNDyFloSS) is a £2.76 million component of the Natural Environment Research Council (NERC) Shelf Sea Biogeochemistry (SSB) research programme, running from 2013 to 2017. It is jointly funded by NERC and the Department for Environment, Food and Rural Affairs (DEFRA). The aim of the research is to perform a comprehensive study of the cycling of nutrients and carbon throughout the water column over the whole north-west European shelf. This will allow the fluxes of nutrients and carbon between the shelf and the deep ocean and atmosphere to be quantified, establishing the role of the north-west European continental shelf in the global carbon cycle.

Background

Shelf seas are the primary regions of human marine resource exploitation, including both renewable and fossil fuel energy sources, recreation, trade and food production. They provide 90% of global fish catches which form an important source of food to much of the global population. They also play an important role in the ecosystem services provided by the oceans as a whole, in particular in storing carbon away from the atmosphere.

Physical and biochemical processes in shelf seas influence the removal of CO2 from the atmosphere and the subsequent storage of carbon in the deep ocean. Biological growth draws carbon out of the water, which is then replaced by carbon in CO2 from the atmosphere. In the shelf seas this growth is supported by terrestrial and open ocean sources of nutrients, implying intimate roles for both the terrestrial biosphere and the open ocean environment in regulating shelf sea climate services. The oceans can also be a major source or sink for other greenhouse gases, including nitrous oxide (N2O), with the shallow shelf sea thought to play a key role.

The spatial extent of the submerged continental shelves varies greatly. The NW European shelf sea is one of the largest and hence is likely to play a significant role in marine biogeochemical cycling, alongside providing a useful model for other systems. However, even in this relatively well studied region, there is a lack of detailed understanding of the principal controls on the cycling of carbon and the major nutrient elements, nitrogen, phosphorus and silicon. Consequently it is also difficult to predict how the cycling of these elements and hence the carbon removal they support may be altered by ongoing and potential future global change. This work package aims to address these uncertainties through a comprehensive study of the cycling of the major nutrients and carbon throughout the water column over the NW European shelf sea system.

Further details are available on the SSB website.

Participants

9 different organisations are directly involved in research for SSB Work Package 1. These institutions are

  • Centre for Environment, Fisheries and Aquaculture Science (Cefas)
  • National Oceanography Centre (NOC)
  • Plymouth Marine Laboratory (PML)
  • Scottish Association for Marine Science (SAMS) / Scottish Marine Institute (SMI)
  • University of Aberdeen
  • University of Bangor
  • University of East Anglia (UEA)
  • University of Liverpool
  • University of Southampton

In addition, there are third party institutions carrying out sampling work for SSB Work Package 1, but who are not involved in the programme itself. These are:

  • The Agri-Food and Biosciences Institute (AFBI)
  • Irish Marine Institute (MI)
  • Marine Science Scotland (MSS)

Objectives

Two overarching objectives are defined for this Work Package.

  • Objective 1: Estimate the size of the continental shelf carbon pump over the whole north-west European shelf.
    This will consist of two principal activities. (1) Over a 12 month period, observations of air-sea CO2 fluxes will be made to provide a synoptic estimate of the magnitude of carbon update by the whole shelf system. (2) Concentrations of carbon (C), nitrogen (N), phosphate (P) and silicate (Si) will be estimated in water flowing on and off the shelf. These estimates will be coupled to estimates of flow and dispersion along the shelf edge, through collaboration with the NERC Fluxes across Sloping Topography of the North East Atlantic (FASTNEt) programme to allow an observational estimate of the net off-shelf transport of C, N, P and Si.

  • Objective 2: Determine the relative importance of external nutrient sources and internal biogeochemical cycling in maintaining the continental shelf pump.
    Estimates of the flux of nutrients and carbon generated in Objective 1 will be used to determine the estimation of any excess of on-shelf nutrient supply, relative to that of carbon. Work Package 1 will then quantify the processes which govern internal biogeochemical cycling by measuring the uptake ratios of N, P, Si and C into phytoplankton and the element and energy balance of organic matter production by autotrophs. Potential modifications to the relative concentrations and uptake of C, N, P and Si in the thermocline and sediment food webs will also be assessed, as will the relative importance of microbial and zooplankton turnover in controlling C, N, P and Si.

Fieldwork and data collection

Data for Objective 1 will be provided using pCO2 systems aboard third party vessels and ferry boxes, along with measurements made through the FASTNEt programme and through the Work Package 1 process cruises detailed below. The third party cruises will be undertaken by Cefas, MI, MSS, University of Bangor and AFBI, spanning the shelf seas and shelf-edges around the United Kingdom and the Republic of Ireland.

The Work Package 1 process cruises will provide data for Objective 1 and Objective 2 and are listed in the table below. The study area is the marine shelf (and shelf-edge) of the Celtic Sea. Work will be carried out on board the NERC research vessels RRS Discovery and RRS James Cook. These cruises will focus on the physics and biogeochemistry of the benthic and pelagic zones of the water column, primarily around four main sampling sites in this area.

Cruise identifier Research ship Cruise dates Work packages
JC105 RRS James Cook June 2014 WP 1, WP 2 and WP 3
DY026 RRS Discovery August 2014 WP1, WP 2 and WP 3
DY018 RRS Discovery November - December 2014 WP 1 and WP 3
DY029 RRS Discovery April 2015 WP 1 and WP 3
DY033 RRS Discovery July 2015 WP 1 and WP 3

Activities will include Conductivity Temperature and Depth (CTD) deployments, Acoustic Doppler Current Profilers (ADCP) surveys, moorings and wire-walker deployments, autonomous gliders and submersible surveys, Marine Snow Catcher particulate matter analysis, plankton net hauls and laboratory incubations with sea water samples.


Data Activity or Cruise Information

Cruise

Cruise Name DY008
Departure Date 2014-03-18
Arrival Date 2014-04-13
Principal Scientist(s)Henry Ruhl (National Oceanography Centre, Southampton)
Ship RRS Discovery

Complete Cruise Metadata Report is available here


Fixed Station Information

Fixed Station Information

Station NameCS2
CategoryOffshore area
Latitude48° 33.23' N
Longitude9° 29.17' W
Water depth below MSL200.0 m

Physical-Biological Control of New Production within the Seasonal Thermocline: Fixed Station CS2

This station is positioned close to the edge of the north-west European shelf edge (see figure below). It was first visited by the RRS James Clark Ross (JR98) in 2003 and then by the RRS Charles Darwin (CD173) in 2005. This station was then re-visited in 2014 during the RRS Discovery cruise DY018, as part of work package I of the Shelf Seas Biogeochemistry project. The station has a mean water depth 201 m at the following co-ordinates:

Box Corner Latitude Longitude
North-west corner 48.5838° -9.5497°
South-east corner 48.4998° -9.4364°

The position of this station relative to the other sites visited during JR98, CD173 and DY018 can be seen from the figure below.

BODC image

The following table describes which sites were visited during which cruises

JB3 Bank 2 OB IS1b CS1 CS2 CS3 U2 Candyfloss/CCS Benthic A Benthic H Benthic I Benthic G East of Haig Fras Nymph Bank Celtic Deep East of Celtic Deep
JR98 - - - X X X X X - - - - - - - - -
CD173 X X X - - - - X - - - - - - - - -
DY018 - - - - - X - - X X X X X X X X X

The deployment and sampling history, to date, for this station is summarised below:

Sampling History

JR98 CD173 DY018
CTD casts 30 15 15
Free-fall light yo-yo profiles - 153 -
Profiling radiometer - 16 -
Zooplankton net hauls - - 32
Box cores - - 5
Marine snow catcher deployments - - 17
Stand Alone Pump Systems (SAPS) - - 2

Mooring deployments

Latitude Longitude Water depth (m) Moored instrument Deployment date Recovery date Deployment cruise Recovery cruise Comments
48.532° -9.463° 200 Surface temperature toroid 2003-07-28 2003-08-12 JR98 JR98 -
48.532° -9.463° 200 Thermistor chain throughout water column 2003-07-28 2003-08-12 JR98 JR98 -
48.532° -9.463° 200 Sub-surface 600 kHz ADCP 2003-07-28 2003-08-12 JR98 JR98 -
48.532° -9.463° 200 Aanderaa RCM7 current meter/CTD 2003-07-28 2003-08-12 JR98 JR98 -
48.532° -9.463° 200 Seabed frame 150 kHz ADCP 2003-07-28 2003-08-12 JR98 JR98 -
48.532° -9.463° 200 Seabed frame 300 kHz ADCP 2003-07-28 2003-08-12 JR98 JR98 -
48.571° -9.509° 200 Thermistor chain throughout water column 2005-07-17 2005-07-24 CD173 CD173 -
48.573° -9.51° 194 Sub-surface 300 kHz ADCP 2005-07-17 2005-07-24 CD173 CD173 -
48.572° -9.508° 196 Seabed frame 300 kHz ADCP 2005-07-17 2005-07-24 CD173 CD173 -
48.571° -9.507° 202 Seabed frame 150 kHz ADCP 2005-07-17 2005-07-24 CD173 CD173 -
- - 205 T-F chain 2014-11-17 09:03 UTC 2014-11-19 17:07 UTC DY018 DY018 -

Related Fixed Station activities are detailed in Appendix 1


BODC Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
Blank Unqualified
< Below detection limit
> In excess of quoted value
A Taxonomic flag for affinis (aff.)
B Beginning of CTD Down/Up Cast
C Taxonomic flag for confer (cf.)
D Thermometric depth
E End of CTD Down/Up Cast
G Non-taxonomic biological characteristic uncertainty
H Extrapolated value
I Taxonomic flag for single species (sp.)
K Improbable value - unknown quality control source
L Improbable value - originator's quality control
M Improbable value - BODC quality control
N Null value
O Improbable value - user quality control
P Trace/calm
Q Indeterminate
R Replacement value
S Estimated value
T Interpolated value
U Uncalibrated
W Control value
X Excessive difference

SeaDataNet Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
0 no quality control
1 good value
2 probably good value
3 probably bad value
4 bad value
5 changed value
6 value below detection
7 value in excess
8 interpolated value
9 missing value
A value phenomenon uncertain
B nominal value
Q value below limit of quantification

Appendix 1: CS2

Related series for this Fixed Station are presented in the table below. Further information can be found by following the appropriate links.

If you are interested in these series, please be aware we offer a multiple file download service. Should your credentials be insufficient for automatic download, the service also offers a referral to our Enquiries Officer who may be able to negotiate access.

Series IdentifierData CategoryStart date/timeStart positionCruise
1106504CTD or STD cast2003-07-27 21:58:0248.49983 N, 9.54967 WRRS James Clark Ross JR20030725 (JR98)
1106528CTD or STD cast2003-07-29 02:56:5948.538 N, 9.46383 WRRS James Clark Ross JR20030725 (JR98)
1106541CTD or STD cast2003-07-29 03:58:0248.538 N, 9.46417 WRRS James Clark Ross JR20030725 (JR98)
1106553CTD or STD cast2003-07-29 05:20:5948.538 N, 9.46417 WRRS James Clark Ross JR20030725 (JR98)
1106565CTD or STD cast2003-07-29 06:01:0048.538 N, 9.464 WRRS James Clark Ross JR20030725 (JR98)
1106577CTD or STD cast2003-07-29 06:58:0248.538 N, 9.46417 WRRS James Clark Ross JR20030725 (JR98)
1106589CTD or STD cast2003-07-29 08:01:5848.538 N, 9.464 WRRS James Clark Ross JR20030725 (JR98)
1106590CTD or STD cast2003-07-29 09:17:0048.538 N, 9.46417 WRRS James Clark Ross JR20030725 (JR98)
1106608CTD or STD cast2003-07-29 10:22:5748.538 N, 9.464 WRRS James Clark Ross JR20030725 (JR98)
1106621CTD or STD cast2003-07-29 11:15:0448.53783 N, 9.464 WRRS James Clark Ross JR20030725 (JR98)
1106633CTD or STD cast2003-07-29 12:28:5748.53783 N, 9.464 WRRS James Clark Ross JR20030725 (JR98)
1106645CTD or STD cast2003-07-29 13:37:0348.53783 N, 9.464 WRRS James Clark Ross JR20030725 (JR98)
1106657CTD or STD cast2003-07-29 14:06:0048.53783 N, 9.464 WRRS James Clark Ross JR20030725 (JR98)
1106669CTD or STD cast2003-07-29 15:00:0048.538 N, 9.464 WRRS James Clark Ross JR20030725 (JR98)
1106670CTD or STD cast2003-07-29 16:12:0048.538 N, 9.464 WRRS James Clark Ross JR20030725 (JR98)
1106682CTD or STD cast2003-07-29 17:00:5848.538 N, 9.46417 WRRS James Clark Ross JR20030725 (JR98)
1106694CTD or STD cast2003-07-29 18:00:0048.53783 N, 9.464 WRRS James Clark Ross JR20030725 (JR98)
1106701CTD or STD cast2003-07-29 18:58:0248.53783 N, 9.46417 WRRS James Clark Ross JR20030725 (JR98)
1106713CTD or STD cast2003-07-29 19:59:5748.53783 N, 9.46417 WRRS James Clark Ross JR20030725 (JR98)
1106725CTD or STD cast2003-07-29 20:57:5948.53783 N, 9.464 WRRS James Clark Ross JR20030725 (JR98)
1106737CTD or STD cast2003-07-29 21:57:0148.538 N, 9.464 WRRS James Clark Ross JR20030725 (JR98)
1106749CTD or STD cast2003-07-29 23:07:0048.538 N, 9.46383 WRRS James Clark Ross JR20030725 (JR98)
1106750CTD or STD cast2003-07-29 23:56:5948.53783 N, 9.464 WRRS James Clark Ross JR20030725 (JR98)
1106762CTD or STD cast2003-07-30 00:58:0248.53783 N, 9.464 WRRS James Clark Ross JR20030725 (JR98)
1106774CTD or STD cast2003-07-30 01:57:0448.53783 N, 9.464 WRRS James Clark Ross JR20030725 (JR98)
1106786CTD or STD cast2003-07-30 02:56:5948.53833 N, 9.46317 WRRS James Clark Ross JR20030725 (JR98)
1106798CTD or STD cast2003-07-30 03:59:0248.538 N, 9.464 WRRS James Clark Ross JR20030725 (JR98)
1106805CTD or STD cast2003-07-30 05:09:0148.538 N, 9.464 WRRS James Clark Ross JR20030725 (JR98)
1108326CTD or STD cast2003-08-12 06:46:5748.52383 N, 9.45533 WRRS James Clark Ross JR20030725 (JR98)
1108338CTD or STD cast2003-08-12 11:25:0048.52883 N, 9.47533 WRRS James Clark Ross JR20030725 (JR98)
737376CTD or STD cast2005-07-17 18:57:0048.575 N, 9.51433 WRRS Charles Darwin CD173
737388CTD or STD cast2005-07-17 21:14:0048.57517 N, 9.515 WRRS Charles Darwin CD173
737407CTD or STD cast2005-07-17 23:07:0048.57617 N, 9.51083 WRRS Charles Darwin CD173
737419CTD or STD cast2005-07-18 00:58:0048.57533 N, 9.50133 WRRS Charles Darwin CD173
737420CTD or STD cast2005-07-18 07:19:0048.568 N, 9.50233 WRRS Charles Darwin CD173
1174790PAR radiance and irradiance2005-07-18 09:32:4748.532 N, 9.463 WRRS Charles Darwin CD173
1174808PAR radiance and irradiance2005-07-18 09:39:4548.532 N, 9.463 WRRS Charles Darwin CD173
737432CTD or STD cast2005-07-18 12:02:0048.56817 N, 9.5115 WRRS Charles Darwin CD173
1174821PAR radiance and irradiance2005-07-18 14:02:4548.532 N, 9.463 WRRS Charles Darwin CD173
1174833PAR radiance and irradiance2005-07-18 14:07:2248.532 N, 9.463 WRRS Charles Darwin CD173
737444CTD or STD cast2005-07-18 16:22:0048.5705 N, 9.49217 WRRS Charles Darwin CD173
737456CTD or STD cast2005-07-18 18:39:0048.56867 N, 9.48233 WRRS Charles Darwin CD173
737616CTD or STD cast2005-07-23 03:00:0048.57167 N, 9.48967 WRRS Charles Darwin CD173
737628CTD or STD cast2005-07-23 07:18:0048.57083 N, 9.48733 WRRS Charles Darwin CD173
1174845PAR radiance and irradiance2005-07-23 09:10:3748.532 N, 9.463 WRRS Charles Darwin CD173
1174857PAR radiance and irradiance2005-07-23 09:15:5148.532 N, 9.463 WRRS Charles Darwin CD173
1174869PAR radiance and irradiance2005-07-23 09:22:3748.532 N, 9.463 WRRS Charles Darwin CD173
737641CTD or STD cast2005-07-23 10:32:0048.5785 N, 9.50317 WRRS Charles Darwin CD173
737653CTD or STD cast2005-07-23 15:25:0048.57733 N, 9.48133 WRRS Charles Darwin CD173
1174870PAR radiance and irradiance2005-07-23 17:08:3248.532 N, 9.463 WRRS Charles Darwin CD173
1174882PAR radiance and irradiance2005-07-23 18:40:3548.532 N, 9.463 WRRS Charles Darwin CD173
737665CTD or STD cast2005-07-23 19:59:0048.57617 N, 9.48967 WRRS Charles Darwin CD173
737677CTD or STD cast2005-07-23 23:07:0048.58083 N, 9.50617 WRRS Charles Darwin CD173
737689CTD or STD cast2005-07-24 04:03:0048.5825 N, 9.512 WRRS Charles Darwin CD173
1336711Water sample data2014-03-28 15:55:0048.57113 N, 9.5127 WRRS Discovery DY008
2117548Water sample data2014-03-28 15:55:0048.57113 N, 9.5127 WRRS Discovery DY008
2119101Water sample data2014-03-28 15:55:0048.57113 N, 9.5127 WRRS Discovery DY008
1373057CTD or STD cast2014-08-07 06:04:0048.57 N, 9.51 WRRS Discovery DY026A
2127506Water sample data2014-08-07 06:20:0048.5699 N, 9.51027 WRRS Discovery DY026A
1373069CTD or STD cast2014-08-07 11:10:0048.57633 N, 9.51617 WRRS Discovery DY026A
2118146Water sample data2014-08-07 11:29:3048.57648 N, 9.5154 WRRS Discovery DY026A
2127518Water sample data2014-08-07 11:29:3048.57648 N, 9.5154 WRRS Discovery DY026A
1373070CTD or STD cast2014-08-07 15:00:0048.57167 N, 9.505 WRRS Discovery DY026A
2127531Water sample data2014-08-07 15:17:0048.5711 N, 9.5046 WRRS Discovery DY026A
1371849CTD or STD cast2014-11-14 13:15:0048.571 N, 9.50947 WRRS Discovery DY018 (GApr04)
2117689Water sample data2014-11-14 13:23:3048.57106 N, 9.50945 WRRS Discovery DY018 (GApr04)
1749283Fluorescence or pigments2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749295Fluorescence or pigments2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749302Fluorescence or pigments2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749314Fluorescence or pigments2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749326Fluorescence or pigments2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749338Hydrography time series at depth2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749351Hydrography time series at depth2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749363Hydrography time series at depth2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749375Hydrography time series at depth2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749399Hydrography time series at depth2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749406Hydrography time series at depth2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749418Hydrography time series at depth2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749431Hydrography time series at depth2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749443Hydrography time series at depth2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749455Hydrography time series at depth2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749467Hydrography time series at depth2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749479Hydrography time series at depth2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749480Hydrography time series at depth2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749492Hydrography time series at depth2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749511Hydrography time series at depth2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749523Hydrography time series at depth2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749535Hydrography time series at depth2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749547Hydrography time series at depth2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749559Hydrography time series at depth2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749560Hydrography time series at depth2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749572Hydrography time series at depth2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749584Hydrography time series at depth2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749596Hydrography time series at depth2014-11-17 10:00:0048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1749387Hydrography time series at depth2014-11-17 10:00:3048.57086 N, 9.5097 WRRS Discovery DY018 (GApr04)
1371978CTD or STD cast2014-11-17 12:25:0048.57087 N, 9.50968 WRRS Discovery DY018 (GApr04)
2117690Water sample data2014-11-17 12:35:3048.57086 N, 9.50969 WRRS Discovery DY018 (GApr04)
2119832Water sample data2014-11-17 12:35:3048.57086 N, 9.50969 WRRS Discovery DY018 (GApr04)
2126804Water sample data2014-11-17 12:35:3048.57086 N, 9.50969 WRRS Discovery DY018 (GApr04)
2136614Water sample data2014-11-17 12:35:3048.57086 N, 9.50969 WRRS Discovery DY018 (GApr04)
1371991CTD or STD cast2014-11-17 15:42:0048.57087 N, 9.50968 WRRS Discovery DY018 (GApr04)
1372005CTD or STD cast2014-11-18 05:16:0048.57107 N, 9.51052 WRRS Discovery DY018 (GApr04)
2117708Water sample data2014-11-18 05:28:0048.57107 N, 9.51051 WRRS Discovery DY018 (GApr04)
2126816Water sample data2014-11-18 05:28:0048.57107 N, 9.51051 WRRS Discovery DY018 (GApr04)
2136626Water sample data2014-11-18 05:28:0048.57107 N, 9.51051 WRRS Discovery DY018 (GApr04)
1372017CTD or STD cast2014-11-18 08:10:0048.57127 N, 9.51102 WRRS Discovery DY018 (GApr04)
1372460CTD or STD cast2014-11-18 09:15:0048.57127 N, 9.51102 WRRS Discovery DY018 (GApr04)
2120058Water sample data2014-11-18 09:19:0048.57127 N, 9.51102 WRRS Discovery DY018 (GApr04)
2121479Water sample data2014-11-18 09:19:0048.57127 N, 9.51102 WRRS Discovery DY018 (GApr04)
2127033Water sample data2014-11-18 09:19:0048.57127 N, 9.51102 WRRS Discovery DY018 (GApr04)
1372029CTD or STD cast2014-11-18 10:02:0048.57127 N, 9.51102 WRRS Discovery DY018 (GApr04)
1372030CTD or STD cast2014-11-18 12:11:0048.57123 N, 9.51103 WRRS Discovery DY018 (GApr04)
2117721Water sample data2014-11-18 12:21:3048.57125 N, 9.51104 WRRS Discovery DY018 (GApr04)
2119844Water sample data2014-11-18 12:21:3048.57125 N, 9.51104 WRRS Discovery DY018 (GApr04)
2126828Water sample data2014-11-18 12:21:3048.57125 N, 9.51104 WRRS Discovery DY018 (GApr04)
2136638Water sample data2014-11-18 12:21:3048.57125 N, 9.51104 WRRS Discovery DY018 (GApr04)
1372472CTD or STD cast2014-11-19 10:02:0048.57112 N, 9.5095 WRRS Discovery DY018 (GApr04)
2120071Water sample data2014-11-19 10:06:0048.57113 N, 9.50949 WRRS Discovery DY018 (GApr04)
2121480Water sample data2014-11-19 10:06:0048.57113 N, 9.50949 WRRS Discovery DY018 (GApr04)
2127045Water sample data2014-11-19 10:06:0048.57113 N, 9.50949 WRRS Discovery DY018 (GApr04)
1372042CTD or STD cast2014-11-19 12:17:0048.57113 N, 9.50952 WRRS Discovery DY018 (GApr04)
2117733Water sample data2014-11-19 12:27:0048.57112 N, 9.50949 WRRS Discovery DY018 (GApr04)
2119856Water sample data2014-11-19 12:27:0048.57112 N, 9.50949 WRRS Discovery DY018 (GApr04)
2126841Water sample data2014-11-19 12:27:0048.57112 N, 9.50949 WRRS Discovery DY018 (GApr04)
2136651Water sample data2014-11-19 12:27:0048.57112 N, 9.50949 WRRS Discovery DY018 (GApr04)
1372054CTD or STD cast2014-11-19 13:58:0048.57112 N, 9.50953 WRRS Discovery DY018 (GApr04)
1372066CTD or STD cast2014-11-20 02:11:0048.57352 N, 9.50627 WRRS Discovery DY018 (GApr04)
2117745Water sample data2014-11-20 02:21:3048.57351 N, 9.50628 WRRS Discovery DY018 (GApr04)
2126853Water sample data2014-11-20 02:21:3048.57351 N, 9.50628 WRRS Discovery DY018 (GApr04)
2136663Water sample data2014-11-20 02:21:3048.57351 N, 9.50628 WRRS Discovery DY018 (GApr04)
1372238CTD or STD cast2014-11-24 13:17:0048.571 N, 9.50945 WRRS Discovery DY018 (GApr04)
1372251CTD or STD cast2014-11-24 14:09:0048.571 N, 9.50947 WRRS Discovery DY018 (GApr04)
2119893Water sample data2014-11-24 14:12:3048.571 N, 9.50946 WRRS Discovery DY018 (GApr04)
1624461CTD or STD cast2015-03-24 05:51:0048.57065 N, 9.5093 WRRS Discovery DY021
2118091Water sample data2015-03-24 05:59:0048.57066 N, 9.5093 WRRS Discovery DY021
2127358Water sample data2015-03-24 05:59:0048.57066 N, 9.5093 WRRS Discovery DY021
1626271CTD or STD cast2015-04-09 02:07:0048.57113 N, 9.51593 WRRS Discovery DY029 (GApr04)
1626283CTD or STD cast2015-04-09 07:07:0048.57117 N, 9.50992 WRRS Discovery DY029 (GApr04)
1626258CTD or STD cast2015-04-09 18:06:0048.5742 N, 9.50827 WRRS Discovery DY029 (GApr04)
2136780Water sample data2015-04-10 02:23:0048.57114 N, 9.50994 WRRS Discovery DY029 (GApr04)
2118299Water sample data2015-04-10 07:25:0048.57116 N, 9.5099 WRRS Discovery DY029 (GApr04)
1626523CTD or STD cast2015-04-17 07:09:0048.57188 N, 9.51053 WRRS Discovery DY029 (GApr04)
2118411Water sample data2015-04-17 07:14:3048.57057 N, 9.51103 WRRS Discovery DY029 (GApr04)
2136903Water sample data2015-04-17 07:14:3048.57057 N, 9.51103 WRRS Discovery DY029 (GApr04)
2118472Water sample data2015-04-24 02:23:3048.57129 N, 9.50945 WRRS Discovery DY029 (GApr04)
2136940Water sample data2015-04-24 02:23:3048.57129 N, 9.50945 WRRS Discovery DY029 (GApr04)
1626812CTD or STD cast2015-04-24 02:41:0048.57132 N, 9.50962 WRRS Discovery DY029 (GApr04)
1627378CTD or STD cast2015-04-24 05:43:0048.52172 N, 9.45178 WRRS Discovery DY029 (GApr04)
1626824CTD or STD cast2015-04-24 09:04:0048.60553 N, 9.44478 WRRS Discovery DY029 (GApr04)
2118484Water sample data2015-04-24 13:35:3048.5697 N, 9.50944 WRRS Discovery DY029 (GApr04)
2136952Water sample data2015-04-24 13:35:3048.5697 N, 9.50944 WRRS Discovery DY029 (GApr04)
1626836CTD or STD cast2015-04-24 13:49:0048.56968 N, 9.50942 WRRS Discovery DY029 (GApr04)
1626848CTD or STD cast2015-04-24 15:45:0048.5666 N, 9.50927 WRRS Discovery DY029 (GApr04)
1627391CTD or STD cast2015-04-24 16:27:0048.56667 N, 9.50933 WRRS Discovery DY029 (GApr04)
1626861CTD or STD cast2015-04-24 17:25:0048.56647 N, 9.50928 WRRS Discovery DY029 (GApr04)
1624983CTD or STD cast2015-05-22 14:55:0048.57023 N, 9.5104 WRRS Discovery DY030
2132545Water sample data2015-05-22 15:11:0048.57023 N, 9.51038 WRRS Discovery DY030
2137838Water sample data2015-05-22 15:11:0048.57023 N, 9.51038 WRRS Discovery DY030
1624645CTD or STD cast2015-05-22 16:13:0048.57023 N, 9.5104 WRRS Discovery DY030
2123413Water sample data2015-05-22 16:26:3048.57023 N, 9.51039 WRRS Discovery DY030
1625199CTD or STD cast2015-07-19 01:15:0048.57085 N, 9.5098 WRRS Discovery DY033 (GApr04)
2118693Water sample data2015-07-19 01:21:3048.57086 N, 9.5099 WRRS Discovery DY033 (GApr04)
2120279Water sample data2015-07-19 01:21:3048.57086 N, 9.5099 WRRS Discovery DY033 (GApr04)
2123566Water sample data2015-07-19 01:21:3048.57086 N, 9.5099 WRRS Discovery DY033 (GApr04)
2137931Water sample data2015-07-19 01:21:3048.57086 N, 9.5099 WRRS Discovery DY033 (GApr04)
1625206CTD or STD cast2015-07-19 11:05:0048.57113 N, 9.50987 WRRS Discovery DY033 (GApr04)
2123578Water sample data2015-07-19 11:17:0048.57115 N, 9.50986 WRRS Discovery DY033 (GApr04)
2137943Water sample data2015-07-19 11:17:0048.57115 N, 9.50986 WRRS Discovery DY033 (GApr04)
1625218CTD or STD cast2015-07-19 15:50:0048.57122 N, 9.50985 WRRS Discovery DY033 (GApr04)
1625231CTD or STD cast2015-07-20 02:12:0048.57083 N, 9.50967 WRRS Discovery DY033 (GApr04)
2118700Water sample data2015-07-20 02:24:0048.57092 N, 9.50971 WRRS Discovery DY033 (GApr04)
2123591Water sample data2015-07-20 02:24:0048.57092 N, 9.50971 WRRS Discovery DY033 (GApr04)
2137955Water sample data2015-07-20 02:24:0048.57092 N, 9.50971 WRRS Discovery DY033 (GApr04)
1625685CTD or STD cast2015-07-20 03:29:0048.57083 N, 9.50967 WRRS Discovery DY033 (GApr04)
2120440Water sample data2015-07-20 03:39:0048.57093 N, 9.50975 WRRS Discovery DY033 (GApr04)
2123947Water sample data2015-07-20 03:39:0048.57093 N, 9.50975 WRRS Discovery DY033 (GApr04)
1625243CTD or STD cast2015-07-20 05:18:0048.57083 N, 9.50967 WRRS Discovery DY033 (GApr04)
1625255CTD or STD cast2015-07-20 10:04:0048.5711 N, 9.5093 WRRS Discovery DY033 (GApr04)
2120280Water sample data2015-07-20 11:15:0048.5711 N, 9.50929 WRRS Discovery DY033 (GApr04)
2123609Water sample data2015-07-20 11:15:0048.5711 N, 9.50929 WRRS Discovery DY033 (GApr04)
2137967Water sample data2015-07-20 11:15:0048.5711 N, 9.50929 WRRS Discovery DY033 (GApr04)
1625267CTD or STD cast2015-07-20 15:26:0048.57107 N, 9.50897 WRRS Discovery DY033 (GApr04)
2119752Water sample data2015-08-31 08:42:3048.57077 N, 9.50961 WRRS Discovery DY034
2122317Water sample data2015-08-31 10:10:0048.57082 N, 9.51127 WRRS Discovery DY034