Metadata Report for BODC Series Reference Number 679384


Metadata Summary

Data Description

Data Category Transmittance/attenuance, turbidity, or SPM conc.
Instrument Type
NameCategories
Seapoint Turbidity Meter  optical backscatter sensors
Instrument Mounting moored surface buoy
Originating Country United Kingdom
Originator -
Originating Organization Centre for Environment, Fisheries and Aquaculture Science Lowestoft Laboratory
Processing Status banked
Project(s) Coastal Observatory
 

Data Identifiers

Originator's Identifier LB2_5_FT1434
BODC Series Reference 679384
 

Time Co-ordinates(UT)

Start Time (yyyy-mm-dd hh:mm) 2005-10-27 10:00
End Time (yyyy-mm-dd hh:mm) 2006-01-07 05:00
Nominal Cycle Interval -
 

Spatial Co-ordinates

Latitude 53.44990 N ( 53° 27.0' N )
Longitude 3.64070 W ( 3° 38.4' W )
Positional Uncertainty 0.5 to 1.0 n.miles
Minimum Sensor Depth 1.0 m
Maximum Sensor Depth 1.0 m
Minimum Sensor Height 24.0 m
Maximum Sensor Height 24.0 m
Sea Floor Depth 25.0 m
Sensor Distribution Fixed common depth - All sensors are grouped effectively at the same depth which is effectively fixed for the duration of the series
Sensor Depth Datum Instantaneous - Depth measured below water line or instantaneous water body surface
Sea Floor Depth Datum Instantaneous - Depth measured below water line or instantaneous water body surface
 

Parameters

BODC CODE Rank Units Short Title Title
AADYAA01 1 Days Date(Loch_Day) Date (time from 00:00 01/01/1760 to 00:00 UT on day)
AAFDZZ01 1 Days Time(Day_Fract) Time (time between 00:00 UT and timestamp)
ACYCAA01 1 Dimensionless Record_No Sequence number
TSEDBSCL 1 Milligrams per litre Tot_SPM_BS+Cal Concentration of suspended particulate material {SPM} per unit volume of the water body [particulate >unknown phase] by in-situ optical backscatter measurement and calibration against sample data
TURBSP01 1 Nephelometric Turbidity Units Turb Turbidity of the water body by SeaPoint turbidity meter and laboratory calibration against formazin
 

Definition of Rank

  • Rank 1 is a one-dimensional parameter
  • Rank 2 is a two-dimensional parameter
  • Rank 0 is a one-dimensional parameter describing the second dimension of a two-dimensional parameter (e.g. bin depths for moored ADCP data)

Problem Reports

No Problem Report Found in the Database


Data Access Policy

Open Data supplied by Natural Environment Research Council (NERC)

You must always use the following attribution statement to acknowledge the source of the information: "Contains data supplied by Natural Environment Research Council."


Narrative Documents

Seapoint Turbidity Meter

The Seapoint Turbidity Meter detects light scattered by particles suspended in water, generating an output voltage proportional to turbidity or suspended solids. Range is selected by two digital lines which can be hard wired or microprocessor controlled, thereby choosing the appropriate range and resolution for measurement of extremely clean to very turbid waters. The offset voltage is within 1 mV of zero and requires no adjustment across gains. The optical design confines the sensing volume to within 5 cm of the sensor allowing near-bottom measurements and minimizing errant reflections in restricted spaces.

Sensor specifications, current at August 2006, are given in the table below.

Sensor Specifications

Power requirements 7 - 20 VDC, 3.5 mA avg., 6 mA pk.
Output 0 - 5.0 VDC
Output Time Constant 0.1 sec.
RMS Noise> < 1 mV
Power-up transient period < 1 sec.
Light Source Wavelength 880 nm
Sensing Distance (from windows) < 5 cm (approx.)
Linearity < 2% deviation 0 - 750 FTU

  Gain Sensitivity (mV FTU -1 ) Range (FTU)
Sensitivity/Range 100x
20x
5x
1x
200
40
10
2
25
125
500
**

** output is non-linear above 750 FTU.

Further details can be found in the manufacturer's specification sheet .

Cefas SmartBuoy data processing

This document outlines the procedures in place at Cefas in August 2005 for processing and quality assuring SmartBuoy data.

Raw data files are processed and the data move through 4 levels, starting with raw data at level 0 through to level 3, where data are fully quality-assured and expressed in appropriate units. The application of the procedures at each level result in data deemed fit to progress to the next level.

Cefas Quality Assurance (QA) Protocols

At Level 0, raw binary data files from the loggers are transferred to the network.

Automated checks - Level 1

Level 1 involves applying automated quality assurance procedures to the data. These include the following steps:

The data are now at QA status = 1.

Manual checks - Level 2

Level 1 burst mean data are now ready for manual QA procedures in order to progress to Level 2. Deployment notes are consulted for any comments on sensor performance or malfunction and post-deployment photographs of sensors, if available, are examined.

Cefas use a data visualisation tool to examine the SmartBuoy data.

Calibrations - Level 3

The combined information from Level 2 is used to determine the periods during which the data series are considered suspect. The data have now reached QA status = 2 and can progress to Level 3, where they will be fully calibrated with field-derived sample data.

The data have now reached QA status = 3 as time stamped, field calibrated burst mean data with parameter codes and units stored on SmartBuoy database with associated uncertainty or 95% confidence limits as appropriate. All SmartBuoy data banked at BODC have passed full Cefas QA procedures. Data that fail the Cefas QA checks are not submitted for banking.

SmartBuoy data processing by BODC

The following outlines the procedures that take place at BODC for banking Cefas SmartBuoy data.

BODC receives SmartBuoy data from Cefas after all quality checks have been passed and all possible calibrations applied. The data files are submitted as separate MS Excel spreadsheets for each parameter, i.e. there are separate files for temperature and salinity from the same instrument. An exact copy of the data is archived for safekeeping upon arrival.

Once the submitted data files are safely archived, the data undergo standard reformatting and banking procedures:


Project Information

Proudman Oceanographic Laboratory Coastal Observatory

The Coastal Observatory was established by Proudman Oceanographic Laboratory as a coastal zone real time observing and monitoring system. The main objective is to understand a coastal sea's response both to natural forcing and to the consequences of human activity. Near real-time measurements will be integrated with coupled models into a pre-operational coastal prediction system whose results will be displayed on the World Wide Web.

The Observatory is expected to grow and evolve as resources and technology allow, all the while building up long time series. A site selection pilot study was carried out in September 2001 and the Observatory became operational in August 2002.

The site is located in Liverpool Bay and is subject to typical coastal sea processes, with strong tides, occasional large storm surges and waves, freshwater input, stable and unstable stratification, high suspended sediment concentration and biogeochemical interaction. Measurements and monitoring will focus on the impacts of storms, variations in river discharge (especially the Mersey), seasonality and blooms in Liverpool Bay.

A variety of methods will be used to obtain measurements, including:

  1. Moored instruments for in situ time series of currents, temperature and salinity profiles, and surface waves and meteorology. It is hoped that turbidity and chlorophyll measurements will be made at another site as the Observatory progresses;
  2. The Cefas Smartbuoy for surface properties such as nutrients and chlorophyll, starting late 2002;
  3. R.V. Prince Madog to carry out spatial surveys and service moorings;
  4. Instrumented ferries for near surface temperature, salinity, turbidity, chlorophyll and nutrients. The first route will be Liverpool to Douglas, Isle of Man, starting late 2002;
  5. Drifters for surface currents and properties such as temperature and salinity, starting in 2004;
  6. Tide gauges, with sensors for meteorology, waves, temperature and salinity, where appropriate;
  7. Meteorological data from Bidston Observatory and Hilbre Island, HF radar and tide gauge sites;
  8. Shore-based HF radar measuring waves and surface currents out to a range of 50 km, starting in 2003;
  9. Satellite data, with infrared for sea surface temperature and visible for chlorophyll and suspended sediment.

The partners currently involved with the project are listed below:

A summary of Coastal Observatory cruises to date on R.V. Prince Madog is given in the table below:

Year No. of cruises Work summary
2001 1 Site selection and pilot study. 95 CTD casts.
2002 4 POL moorings deployed and serviced
Cefas Waverider and SmartBuoy deployed and serviced
103 CTD casts
2003 10 POL moorings serviced
Cefas Waverider and SmartBuoy serviced
341 CTD/LISST casts
2004 9 POL moorings serviced
Cefas Waverider and SmartBuoy serviced
347 CTD/LISST casts
2005 9 POL moorings serviced
Cefas Waverider and SmartBuoy serviced
268 CTD/LISST casts
2006 11 POL moorings serviced
Cefas Waverider and SmartBuoy serviced
508 CTD/LISST casts
2007 9 POL moorings serviced
Cefas Waverider and SmartBuoy serviced
471 CTD/LISST casts
2008 9 POL moorings serviced
Cefas Waverider and SmartBuoy serviced
260 CTD/LISST casts
2009 7 POL moorings serviced
Cefas Waverider and SmartBuoy serviced
213 CTD/LISST casts
2010 8 POL moorings serviced
Cefas Waverider and SmartBuoy serviced
268 CTD/LISST casts
2011 6 POL moorings serviced
Cefas Waverider and SmartBuoy serviced
307 CTD/LISST casts to date, ongoing

Data Activity or Cruise Information

Data Activity

Start Date (yyyy-mm-dd) 2005-10-27
End Date (yyyy-mm-dd) 2006-02-06
Organization Undertaking ActivityCentre for Environment, Fisheries and Aquaculture Science Lowestoft Laboratory
Country of OrganizationUnited Kingdom
Originator's Data Activity IdentifierLB2_005/946
Platform Categorymoored surface buoy

SmartBuoy deployment LB2_005/POLRIG 946

Deployment and recovery

This mooring was deployed in a collaboration between Cefas and the POL Liverpool Bay Coastal Observatory. The rig was deployed during RV Prince Madog cruise No. 41, 2005 (PD41_05). The rig was recovered in February 2006 during RV Prince Madog cruise No. 4, 2006 (PD04_06).

Rig Description

The SmartBuoy carried a suite of Cefas instruments mounted just below the surface, as well as instrumentation belonging to POL at 5 m. Further information is given in the table below. A trial CTD with turbidity sensor was also attached in a cage at 10 m below surface. However, no data were received for this series and no further information is available.

The single point mooring was composed mainly of 0.5 inch long link chain, marked by a 1.8 m diameter toroid and anchored with a half ton clump of scrap chain.

Instrument Serial
Number
Meter
depth (m)
Record
Length (days)
Owner
Seapoint Chlorophyll Fluorometer 2211 1 36 Cefas
Falmouth Scientific OEM CT sensor 1406 1 72 Cefas
Seapoint Turbidity meter 1434 1 72 Cefas
Sea-Bird 37 MicroCAT 2506 5 72 POL
CTD with turbidity sensor Not known 10 Not known Cefas

Other Series linked to this Data Activity - 696547 679372 679360

Cruise

Cruise Name PD41/05
Departure Date 2005-10-26
Arrival Date 2005-10-27
Principal Scientist(s)M John Howarth (Proudman Oceanographic Laboratory)
Ship RV Prince Madog

Complete Cruise Metadata Report is available here


Fixed Station Information

Fixed Station Information

Station NameCoastal Observatory Site 21
CategoryOffshore location
Latitude53° 27.13' N
Longitude3° 38.48' W
Water depth below MSL25.0 m

Liverpool Bay Coastal Observatory Site 21

This station is one of 34 stations regularly visited by the Proudman Oceanographic Laboratory (POL) as part of the Liverpool Bay Coastal Observatory. The main activity at this site are CTD profiles (since August 2002) which are taken during each site visit. This station was also the secondary mooring site (also referred to as Site B) for the Coastal Observatory project between April 2005 and March 2010. After March 2010 the moorings were moved to site 20. The station lies within a box of mean water depth 24 m with the following co-ordinates:

Box Corner Latitude (+ve North) Longitude (+ve East)
North-west corner 53.46028 -3.658
South-east corner 53.44249 -3.6105

The position of this station relative to the other POL Coastal Observatory sites can be seen from the figure below.

BODC image

Mooring Deployment History

2010

Rig Type Typical Instruments Rig IDs Comment
Frame ADCP, CTD, OBS, Telemetry ADCP 1088, 1092, 1096, 1100, 1104, 1107, 1111 January - December
SmartBuoy CT, FL, OBS, BD 1087, 1091, 1095, 1099, 1103, 1110, 1115 January - December

2009

Rig Type Typical Instruments Rig IDs Comment
Frame ADCP, CTD, OBS, Telemetry ADCP 1057, 1065, 1069, 1072, 1076, 1080, 1084 January - December
SmartBuoy CT, FL, OBS, BD 1056, 1064, 1068, 1075, 1079, 1083 January - December

2008

Rig Type Typical Instruments Rig IDs Comment
Frame ADCP, CTD, OBS, Telemetry ADCP 1026, 1030, 1033, 1038, 1053 January - December
SmartBuoy CT, FL, OBS, BD LB2_023/1025, LB2_024/1029, LB2_025/1034, LB2_026/1037, LB2_029/1052 January - December

2007

Rig Type Typical Instruments Rig IDs Comment
Frame ADCP, CTD, OBS, Telemetry ADCP 992, 999, 1002, 1007, 1012, 1019 January - December
SmartBuoy CT, FL, OBS, BD 991, LB2_016/998, LB2_017/1003, LB2_018/1006, LB2_019/1011, LB2_020/1015, LB2_021/1018, LB2_022/1022 January - December

2006

Rig Type Typical Instruments Rig IDs Comment
Frame ADCP, CTD, OBS, Telemetry ADCP 952, 960, 964, 968, 972, 976, 980, 984, 988 January - December
SmartBuoy CT, FL, OBS, BD LB2_006, LB2_007, LB2_008, LB2_009, LB2_010, LB2_011, LB2_012, LB2_013/983, LB2_014/987 January - December

2005

Rig Type Typical Instruments Rig IDs Comment
Frame ADCP, CTD, OBS 923, 927, 931, 936, 940, 943, 947, 950 January - December
SmartBuoy CT, FL, OBS, WMS LB2_001/926, LB2_002/930, LB2_003/935, LB2_004/939, LB2_005/946 May - December
Marker buoy CT 922 April - May

CTD Sampling History

Year Number of Cruises Total Casts per year
2011 5 5
2010 6 6
2009 7 18
2008 9 16
2007 8 17
2006 9 18
2005 9 14
2004 8 8
2003 9 9
2002 2 2

The CTD instrument package for these cruises was a Sea-Bird 911plus, with beam transmissometer, fluorometer, LICOR PAR sensor, LISST-25, and oxygen sensor.

Key

ADCP = Acoustic Doppler Current Profiler
BD = Bacterial degradation experiment
CT = Conductivity and temperature logger
CTD = Conductivity, temperature, depth sensor
FL = Fluorometer
OBS = Optical Backscatter Turbidity meter
Telemetry ADCP = ADCP sending data back to shore in real-time
WMS = Automatic water sampler

Other Series linked to this Fixed Station for this cruise - 679360 679372 696314 696547 1622940

Other Cruises linked to this Fixed Station (with the number of series) - PD01/08 (12) PD01/11 (1) PD02/07 (4) PD02/09B (11) PD02/10 (1) PD04/06 (4) PD04/07 (4) PD06/07 (9) PD07/08 (9) PD07/11 (1) PD09/07 (9) PD09/08 (11) PD11/05 (3) PD11/11 (1) PD12/06 (4) PD12/09 (11) PD13/07 (11) PD14/08 (10) PD16/06 (4) PD16/07 (10) PD17/10 (5) PD18/05 (8) PD18/09 (10) PD19/08 (2) PD20/06 (4) PD20/07 (7) PD21/05 (8) PD21/10 (1) PD22/06 (4) PD23/07 (10) PD23/08 (7) PD24/09 (5) PD25/05 (8) PD25/06 (4) PD27/07 (9) PD29/06 (4) PD29/08 (9) PD29/10 (1) PD30/05 (7) PD33/08 (1) PD33/09 (12) PD34/05 (2) PD35/06 (7) PD36/10 (1) PD37/06 (7) PD37/08 (11) PD38/09 (9) PD43/11 (1) PD47/09 (11) PD48/05 (2) PD49/10 (1)


BODC Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
Blank Unqualified
< Below detection limit
> In excess of quoted value
A Taxonomic flag for affinis (aff.)
B Beginning of CTD Down/Up Cast
C Taxonomic flag for confer (cf.)
D Thermometric depth
E End of CTD Down/Up Cast
G Non-taxonomic biological characteristic uncertainty
H Extrapolated value
I Taxonomic flag for single species (sp.)
K Improbable value - unknown quality control source
L Improbable value - originator's quality control
M Improbable value - BODC quality control
N Null value
O Improbable value - user quality control
P Trace/calm
Q Indeterminate
R Replacement value
S Estimated value
T Interpolated value
U Uncalibrated
W Control value
X Excessive difference

SeaDataNet Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
0 no quality control
1 good value
2 probably good value
3 probably bad value
4 bad value
5 changed value
6 value below detection
7 value in excess
8 interpolated value
9 missing value
A value phenomenon uncertain