Metadata Report for BODC Series Reference Number 700394


Metadata Summary

Data Description

Data Category Fluorescence or pigments
Instrument Type
NameCategories
Chelsea Instruments MINITracka II fluorometer  fluorometers
Instrument Mounting moored surface buoy
Originating Country United Kingdom
Originator -
Originating Organization Centre for Environment, Fisheries and Aquaculture Science Lowestoft Laboratory
Processing Status banked
Project(s) Coastal Observatory
 

Data Identifiers

Originator's Identifier LB2_9_FL175064
BODC Series Reference 700394
 

Time Co-ordinates(UT)

Start Time (yyyy-mm-dd hh:mm) 2006-06-23 14:00
End Time (yyyy-mm-dd hh:mm) 2006-07-27 08:00
Nominal Cycle Interval 1800.0 seconds
 

Spatial Co-ordinates

Latitude 53.44950 N ( 53° 27.0' N )
Longitude 3.64150 W ( 3° 38.5' W )
Positional Uncertainty 0.1 to 0.5 n.miles
Minimum Sensor Depth 1.0 m
Maximum Sensor Depth 1.0 m
Minimum Sensor Height 24.0 m
Maximum Sensor Height 24.0 m
Sea Floor Depth 25.0 m
Sensor Distribution Fixed common depth - All sensors are grouped effectively at the same depth which is effectively fixed for the duration of the series
Sensor Depth Datum Instantaneous - Depth measured below water line or instantaneous water body surface
Sea Floor Depth Datum Instantaneous - Depth measured below water line or instantaneous water body surface
 

Parameters

BODC CODE Rank Units Short Title Title
AADYAA01 1 Days Date(Loch_Day) Date (time from 00:00 01/01/1760 to 00:00 UT on day)
AAFDZZ01 1 Days Time(Day_Fract) Time (time between 00:00 UT and timestamp)
ACYCAA01 1 Dimensionless Record_No Sequence number
FVLTWS01 1 Volts WsVolt Instrument output (voltage) by linear-response chlorophyll fluorometer
 

Definition of Rank

  • Rank 1 is a one-dimensional parameter
  • Rank 2 is a two-dimensional parameter
  • Rank 0 is a one-dimensional parameter describing the second dimension of a two-dimensional parameter (e.g. bin depths for moored ADCP data)

Problem Reports

No Problem Report Found in the Database


Data Access Policy

Open Data supplied by Natural Environment Research Council (NERC)

You must always use the following attribution statement to acknowledge the source of the information: "Contains data supplied by Natural Environment Research Council."


Narrative Documents

Chelsea Instruments MINItracka Fluorometer

The MINI tracka Fluorometer is an in-situ optical sensor that uses a single high intensity LED light source and, according to the manufacturer, is designed to enhance rejection of ambient daylight. The fluorometer provides a linear response between chlorophyll concentration and fluorometer voltage.

Sensor specifications, current at August 2006, are given in the table below. More information can be found at the manufacturer's specification sheet .

Sensor Specifications

  Chlorophyll-a Chlorophyll-a Rhodamine Amido Rhodamine Fluorescein
Excitation wavelengths 430/30 nm 470/30 nm 470/30 nm 425/30 nm 480/80 nm
Emission wavelength 685/30 nm 685/30 nm 590/45 nm 550/30 nm 530/30 nm
Concentration range 0.03-100 µg l -1 0.03-100 µg l -1 0.03-100 µg l -1 0.04-200 µg l -1 0.03-100 µg l -1
Resolution 0.01 µg l -1 0.01 µg l -1 0.01 µg l -1 0.025 µg l -1 0.01 µg l -1
Calibration standard Chlorophyll-a in acetone Chlorophyll-a in acetone      
  Nephelometer Phycoerythrin Phycocyanin
Excitation wavelengths 470/30 nm 530/30 nm 590/35nm
Emission wavelength 470/30 nm 580/30 nm 645/35 nm
Concentration range 0.04-100 FTU 0.03-100 µg l -1 0.03-100 µg l -1
Resolution 0.01 FTU 0.01 µg l -1 0.01 µg l -1
Mechanical   Electrical  
Body Size 149 mm long x 70 mm dia Input Voltage 7 to 40 VDC
Weight in Air 0.7 Kg Output Voltage 0 to 4 VDC (linear)
Weight in Water 0.15 Kg Power requirements 0.7 W typical
Depth Rating 600 m Signal : Noise 10,000 : 1 @ full scale

Cefas SmartBuoy data processing

This document outlines the procedures in place at Cefas in August 2005 for processing and quality assuring SmartBuoy data.

Raw data files are processed and the data move through 4 levels, starting with raw data at level 0 through to level 3, where data are fully quality-assured and expressed in appropriate units. The application of the procedures at each level result in data deemed fit to progress to the next level.

Cefas Quality Assurance (QA) Protocols

At Level 0, raw binary data files from the loggers are transferred to the network.

Automated checks - Level 1

Level 1 involves applying automated quality assurance procedures to the data. These include the following steps:

The data are now at QA status = 1.

Manual checks - Level 2

Level 1 burst mean data are now ready for manual QA procedures in order to progress to Level 2. Deployment notes are consulted for any comments on sensor performance or malfunction and post-deployment photographs of sensors, if available, are examined.

Cefas use a data visualisation tool to examine the SmartBuoy data.

Calibrations - Level 3

The combined information from Level 2 is used to determine the periods during which the data series are considered suspect. The data have now reached QA status = 2 and can progress to Level 3, where they will be fully calibrated with field-derived sample data.

The data have now reached QA status = 3 as time stamped, field calibrated burst mean data with parameter codes and units stored on SmartBuoy database with associated uncertainty or 95% confidence limits as appropriate. All SmartBuoy data banked at BODC have passed full Cefas QA procedures. Data that fail the Cefas QA checks are not submitted for banking.

SmartBuoy data processing by BODC

The following outlines the procedures that take place at BODC for banking Cefas SmartBuoy data.

BODC receives SmartBuoy data from Cefas after all quality checks have been passed and all possible calibrations applied. The data files are submitted as separate MS Excel spreadsheets for each parameter, i.e. there are separate files for temperature and salinity from the same instrument. An exact copy of the data is archived for safekeeping upon arrival.

Once the submitted data files are safely archived, the data undergo standard reformatting and banking procedures:


Project Information

Proudman Oceanographic Laboratory Coastal Observatory

The Coastal Observatory was established by Proudman Oceanographic Laboratory as a coastal zone real time observing and monitoring system. The main objective is to understand a coastal sea's response both to natural forcing and to the consequences of human activity. Near real-time measurements will be integrated with coupled models into a pre-operational coastal prediction system whose results will be displayed on the World Wide Web.

The Observatory is expected to grow and evolve as resources and technology allow, all the while building up long time series. A site selection pilot study was carried out in September 2001 and the Observatory became operational in August 2002.

The site is located in Liverpool Bay and is subject to typical coastal sea processes, with strong tides, occasional large storm surges and waves, freshwater input, stable and unstable stratification, high suspended sediment concentration and biogeochemical interaction. Measurements and monitoring will focus on the impacts of storms, variations in river discharge (especially the Mersey), seasonality and blooms in Liverpool Bay.

A variety of methods will be used to obtain measurements, including:

  1. Moored instruments for in situ time series of currents, temperature and salinity profiles, and surface waves and meteorology. It is hoped that turbidity and chlorophyll measurements will be made at another site as the Observatory progresses;
  2. The Cefas Smartbuoy for surface properties such as nutrients and chlorophyll, starting late 2002;
  3. R.V. Prince Madog to carry out spatial surveys and service moorings;
  4. Instrumented ferries for near surface temperature, salinity, turbidity, chlorophyll and nutrients. The first route will be Liverpool to Douglas, Isle of Man, starting late 2002;
  5. Drifters for surface currents and properties such as temperature and salinity, starting in 2004;
  6. Tide gauges, with sensors for meteorology, waves, temperature and salinity, where appropriate;
  7. Meteorological data from Bidston Observatory and Hilbre Island, HF radar and tide gauge sites;
  8. Shore-based HF radar measuring waves and surface currents out to a range of 50 km, starting in 2003;
  9. Satellite data, with infrared for sea surface temperature and visible for chlorophyll and suspended sediment.

The partners currently involved with the project are listed below:

A summary of Coastal Observatory cruises to date on R.V. Prince Madog is given in the table below:

Year No. of cruises Work summary
2001 1 Site selection and pilot study. 95 CTD casts.
2002 4 POL moorings deployed and serviced
Cefas Waverider and SmartBuoy deployed and serviced
103 CTD casts
2003 10 POL moorings serviced
Cefas Waverider and SmartBuoy serviced
341 CTD/LISST casts
2004 9 POL moorings serviced
Cefas Waverider and SmartBuoy serviced
347 CTD/LISST casts
2005 9 POL moorings serviced
Cefas Waverider and SmartBuoy serviced
268 CTD/LISST casts
2006 11 POL moorings serviced
Cefas Waverider and SmartBuoy serviced
508 CTD/LISST casts
2007 9 POL moorings serviced
Cefas Waverider and SmartBuoy serviced
471 CTD/LISST casts
2008 9 POL moorings serviced
Cefas Waverider and SmartBuoy serviced
260 CTD/LISST casts
2009 7 POL moorings serviced
Cefas Waverider and SmartBuoy serviced
213 CTD/LISST casts
2010 8 POL moorings serviced
Cefas Waverider and SmartBuoy serviced
268 CTD/LISST casts
2011 6 POL moorings serviced
Cefas Waverider and SmartBuoy serviced
307 CTD/LISST casts to date, ongoing

Data Activity or Cruise Information

Data Activity

Start Date (yyyy-mm-dd) 2006-06-23
End Date (yyyy-mm-dd) 2006-07-27
Organization Undertaking ActivityCentre for Environment, Fisheries and Aquaculture Science Lowestoft Laboratory
Country of OrganizationUnited Kingdom
Originator's Data Activity IdentifierLB2_009
Platform Categorymoored surface buoy

Smartbuoy deployment LB2_009

Deployment and Recovery

The mooring was deployed in collaboration between CEFAS and POL Liverpool Bay Coastal Observatory. This rig was deployed as part of the Liverpool Bay Coastal Observatory during R.V. Prince Madog cruise PD20_06. Recovery of the rig took place during R.V. Prince Madog cruise PD22_06. Weather conditions were excellent throughout this cruise.


Rig Position 53 26.968N, 3 38.489W
Water Depth 25.0 m
Deployed 23 June 2006 13:34 GMT
Recovered 27 July 2006 08:18 GMT
No. of days 34

Rig Description

This rig is a single line mooring, comprising a surface CEFAS SmartBuoy and was mainly composed of 0.5 inch long link chain and marked at the surface by a 1.8 m diameter toroid (the CEFAS SmartBuoy) and anchored by a half tonne clump of scrap chain. The CEFAS Smartbuoy contains a suite of instruments mounted just below the surface.

The table below details the CEFAS instrumentation


Instrument Serial
Number
Parameters Meter
depth (m)
Record
Length (days)
Chelsea Instruments Minitracka Fluorometer 175064 Fluorescence 1 34
Falmouth Scientific OEM CT sensor 1406 Temperature
Salinity
1 34
Seapoint Turbidity meter 1434 Turbidity
Suspended Load
1 17

Other Series linked to this Data Activity - 700321 700450

Cruise

Cruise Name PD20/06
Departure Date 2006-06-22
Arrival Date 2006-06-23
Principal Scientist(s)Phil J Knight (Proudman Oceanographic Laboratory)
Ship RV Prince Madog

Complete Cruise Metadata Report is available here


Fixed Station Information

Fixed Station Information

Station NameCoastal Observatory Site 21
CategoryOffshore location
Latitude53° 27.13' N
Longitude3° 38.48' W
Water depth below MSL25.0 m

Liverpool Bay Coastal Observatory Site 21

This station is one of 34 stations regularly visited by the Proudman Oceanographic Laboratory (POL) as part of the Liverpool Bay Coastal Observatory. The main activity at this site are CTD profiles (since August 2002) which are taken during each site visit. This station was also the secondary mooring site (also referred to as Site B) for the Coastal Observatory project between April 2005 and March 2010. After March 2010 the moorings were moved to site 20. The station lies within a box of mean water depth 24 m with the following co-ordinates:

Box Corner Latitude (+ve North) Longitude (+ve East)
North-west corner 53.46028 -3.658
South-east corner 53.44249 -3.6105

The position of this station relative to the other POL Coastal Observatory sites can be seen from the figure below.

BODC image

Mooring Deployment History

2010

Rig Type Typical Instruments Rig IDs Comment
Frame ADCP, CTD, OBS, Telemetry ADCP 1088, 1092, 1096, 1100, 1104, 1107, 1111 January - December
SmartBuoy CT, FL, OBS, BD 1087, 1091, 1095, 1099, 1103, 1110, 1115 January - December

2009

Rig Type Typical Instruments Rig IDs Comment
Frame ADCP, CTD, OBS, Telemetry ADCP 1057, 1065, 1069, 1072, 1076, 1080, 1084 January - December
SmartBuoy CT, FL, OBS, BD 1056, 1064, 1068, 1075, 1079, 1083 January - December

2008

Rig Type Typical Instruments Rig IDs Comment
Frame ADCP, CTD, OBS, Telemetry ADCP 1026, 1030, 1033, 1038, 1053 January - December
SmartBuoy CT, FL, OBS, BD LB2_023/1025, LB2_024/1029, LB2_025/1034, LB2_026/1037, LB2_029/1052 January - December

2007

Rig Type Typical Instruments Rig IDs Comment
Frame ADCP, CTD, OBS, Telemetry ADCP 992, 999, 1002, 1007, 1012, 1019 January - December
SmartBuoy CT, FL, OBS, BD 991, LB2_016/998, LB2_017/1003, LB2_018/1006, LB2_019/1011, LB2_020/1015, LB2_021/1018, LB2_022/1022 January - December

2006

Rig Type Typical Instruments Rig IDs Comment
Frame ADCP, CTD, OBS, Telemetry ADCP 952, 960, 964, 968, 972, 976, 980, 984, 988 January - December
SmartBuoy CT, FL, OBS, BD LB2_006, LB2_007, LB2_008, LB2_009, LB2_010, LB2_011, LB2_012, LB2_013/983, LB2_014/987 January - December

2005

Rig Type Typical Instruments Rig IDs Comment
Frame ADCP, CTD, OBS 923, 927, 931, 936, 940, 943, 947, 950 January - December
SmartBuoy CT, FL, OBS, WMS LB2_001/926, LB2_002/930, LB2_003/935, LB2_004/939, LB2_005/946 May - December
Marker buoy CT 922 April - May

CTD Sampling History

Year Number of Cruises Total Casts per year
2011 5 5
2010 6 6
2009 7 18
2008 9 16
2007 8 17
2006 9 18
2005 9 14
2004 8 8
2003 9 9
2002 2 2

The CTD instrument package for these cruises was a Sea-Bird 911plus, with beam transmissometer, fluorometer, LICOR PAR sensor, LISST-25, and oxygen sensor.

Key

ADCP = Acoustic Doppler Current Profiler
BD = Bacterial degradation experiment
CT = Conductivity and temperature logger
CTD = Conductivity, temperature, depth sensor
FL = Fluorometer
OBS = Optical Backscatter Turbidity meter
Telemetry ADCP = ADCP sending data back to shore in real-time
WMS = Automatic water sampler

Other Series linked to this Fixed Station for this cruise - 700321 700450 1623261

Other Cruises linked to this Fixed Station (with the number of series) - PD01/08 (12) PD01/11 (1) PD02/07 (4) PD02/09B (11) PD02/10 (1) PD04/06 (4) PD04/07 (4) PD06/07 (9) PD07/08 (9) PD07/11 (1) PD09/07 (9) PD09/08 (11) PD11/05 (3) PD11/11 (1) PD12/06 (4) PD12/09 (11) PD13/07 (11) PD14/08 (10) PD16/06 (4) PD16/07 (10) PD17/10 (5) PD18/05 (8) PD18/09 (10) PD19/08 (2) PD20/07 (7) PD21/05 (8) PD21/10 (1) PD22/06 (4) PD23/07 (10) PD23/08 (7) PD24/09 (5) PD25/05 (8) PD25/06 (4) PD27/07 (9) PD29/06 (4) PD29/08 (9) PD29/10 (1) PD30/05 (7) PD33/08 (1) PD33/09 (12) PD34/05 (2) PD35/06 (7) PD36/10 (1) PD37/06 (7) PD37/08 (11) PD38/09 (9) PD41/05 (6) PD43/11 (1) PD47/09 (11) PD48/05 (2) PD49/10 (1)


BODC Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
Blank Unqualified
< Below detection limit
> In excess of quoted value
A Taxonomic flag for affinis (aff.)
B Beginning of CTD Down/Up Cast
C Taxonomic flag for confer (cf.)
D Thermometric depth
E End of CTD Down/Up Cast
G Non-taxonomic biological characteristic uncertainty
H Extrapolated value
I Taxonomic flag for single species (sp.)
K Improbable value - unknown quality control source
L Improbable value - originator's quality control
M Improbable value - BODC quality control
N Null value
O Improbable value - user quality control
P Trace/calm
Q Indeterminate
R Replacement value
S Estimated value
T Interpolated value
U Uncalibrated
W Control value
X Excessive difference

SeaDataNet Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
0 no quality control
1 good value
2 probably good value
3 probably bad value
4 bad value
5 changed value
6 value below detection
7 value in excess
8 interpolated value
9 missing value
A value phenomenon uncertain