Search the data

Metadata Report for BODC Series Reference Number 1879279

Metadata Summary

Data Description

Data Category Water sample data
Instrument Type
Niskin bottle  discrete water samplers
SIS Dissolved Oxygen Analyser  titrators
Instrument Mounting lowered unmanned submersible
Originating Country United Kingdom
Originator Dr Penny Holliday
Originating Organization National Oceanography Centre, Southampton
Processing Status banked
Online delivery of data Download available - Ocean Data View (ODV) format
Project(s) NOCS National Capability

Data Identifiers

Originator's Identifier DY031_CTD_DOXY_213:DY031_058
BODC Series Reference 1879279

Time Co-ordinates(UT)

Start Time (yyyy-mm-dd hh:mm) 2015-06-13 06:58
End Time (yyyy-mm-dd hh:mm) -
Nominal Cycle Interval -

Spatial Co-ordinates

Latitude 57.29964 N ( 57° 18.0' N )
Longitude 10.38406 W ( 10° 23.0' W )
Positional Uncertainty 0.05 to 0.1 n.miles
Minimum Sensor or Sampling Depth 3.9 m
Maximum Sensor or Sampling Depth 2202.9 m
Minimum Sensor or Sampling Height 6.8 m
Maximum Sensor or Sampling Height 2205.8 m
Sea Floor Depth 2209.7 m
Sea Floor Depth Source SCILOG
Sensor or Sampling Distribution Unspecified -
Sensor or Sampling Depth Datum Unspecified -
Sea Floor Depth Datum Unspecified -


BODC CODERankUnitsTitle
ADEPZZ011MetresDepth (spatial coordinate) relative to water surface in the water body
BOTTFLAG1Not applicableSampling process quality flag (BODC C22)
DOKGWITX1Micromoles per kilogramConcentration of oxygen {O2 CAS 7782-44-7} per unit mass of the water body [dissolved plus reactive particulate phase] by Winkler titration
DOXYWITX1Micromoles per litreConcentration of oxygen {O2 CAS 7782-44-7} per unit volume of the water body [dissolved plus reactive particulate phase] by Winkler titration
FIRSEQID1DimensionlessBottle firing sequence number
OXYTMP011Degrees CelsiusTemperature of oxygen fixation
ROSPOSID1DimensionlessBottle rosette position identifier
SAMPRFNM1DimensionlessSample reference number

Definition of BOTTFLAG

0The sampling event occurred without any incident being reported to BODC.
1The filter in an in-situ sampling pump physically ruptured during sample resulting in an unquantifiable loss of sampled material.
2Analytical evidence (e.g. surface water salinity measured on a sample collected at depth) indicates that the water sample has been contaminated by water from depths other than the depths of sampling.
3The feedback indicator on the deck unit reported that the bottle closure command had failed. General Oceanics deck units used on NERC vessels in the 80s and 90s were renowned for reporting misfires when the bottle had been closed. This flag is also suitable for when a trigger command is mistakenly sent to a bottle that has previously been fired.
4During the sampling deployment the bottle was fired in an order other than incrementing rosette position. Indicative of the potential for errors in the assignment of bottle firing depth, especially with General Oceanics rosettes.
5Water was reported to be escaping from the bottle as the rosette was being recovered.
6The bottle seals were observed to be incorrectly seated and the bottle was only part full of water on recovery.
7Either the bottle was found to contain no sample on recovery or there was no bottle fitted to the rosette position fired (but SBE35 record may exist).
8There is reason to doubt the accuracy of the sampling depth associated with the sample.
9The bottle air vent had not been closed prior to deployment giving rise to a risk of sample contamination through leakage.

Definition of Rank

  • Rank 1 is a one-dimensional parameter
  • Rank 2 is a two-dimensional parameter
  • Rank 0 is a one-dimensional parameter describing the second dimension of a two-dimensional parameter (e.g. bin depths for moored ADCP data)

Problem Reports

No Problem Report Found in the Database

Data Access Policy

Open Data supplied by Natural Environment Research Council (NERC)

You must always use the following attribution statement to acknowledge the source of the information: "Contains data supplied by Natural Environment Research Council."

Narrative Documents

SIS Instruments Dissolved Oxygen Analyser

The SIS Instruments Dissolved Oxygen Analyser (DOA) is a PC controlled instrument which is used for the determination of dissolved oxygen in aqueous solutions by the Winkler (1888) titration method. The system consists of a transportable box containing a Metrohm 765 Dosimat motor burette, alternating light photometer and an interface box which provides, via an RS 232 serial link, communication between computer and the instruments. The box also contains a stand with a stirrer used to hold the sample flask. The titration endpoint is determined by eye. Alongside the DOA, SIS instruments provide Windows database and processing software, which is required for data storage and post-processing of the acquired data.


Dimensions 43 x 54 x 41 cm
Weight 20 kg
Voltage 120 and 240 V AC
Frequency 50 to 60 Hz
Burette Metrohm 765 Dosimat
Photometer Alternating light photometer operating with two wavelengths, 15 Bit ADC
Accuracy Absolute 0.3 %
Repeated 0.1%

Niskin Bottle

The Niskin bottle is a device used by oceanographers to collect subsurface seawater samples. It is a plastic bottle with caps and rubber seals at each end and is deployed with the caps held open, allowing free-flushing of the bottle as it moves through the water column.

Standard Niskin

The standard version of the bottle includes a plastic-coated metal spring or elastic cord running through the interior of the bottle that joins the two caps, and the caps are held open against the spring by plastic lanyards. When the bottle reaches the desired depth the lanyards are released by a pressure-actuated switch, command signal or messenger weight and the caps are forced shut and sealed, trapping the seawater sample.

Lever Action Niskin

The Lever Action Niskin Bottle differs from the standard version, in that the caps are held open during deployment by externally mounted stainless steel springs rather than an internal spring or cord. Lever Action Niskins are recommended for applications where a completely clear sample chamber is critical or for use in deep cold water.

Clean Sampling

A modified version of the standard Niskin bottle has been developed for clean sampling. This is teflon-coated and uses a latex cord to close the caps rather than a metal spring. The clean version of the Levered Action Niskin bottle is also teflon-coated and uses epoxy covered springs in place of the stainless steel springs. These bottles are specifically designed to minimise metal contamination when sampling trace metals.


Bottles may be deployed singly clamped to a wire or in groups of up to 48 on a rosette. Standard bottles have a capacity between 1.7 and 30 L, while Lever Action bottles have a capacity between 1.7 and 12 L. Reversing thermometers may be attached to a spring-loaded disk that rotates through 180° on bottle closure.

Discrete Oxygen Samples from CTD bottles for RRS Discovery Cruise DY031

Originator's Protocol for Data Acquisition and Analysis

Water samples were drawn from the CTD rosette bottles deployed during the cruise with samples taken from 80 of the total of 85 CTD casts undertaken.

Dissolved oxygen (DO) concentrations were measured in discrete seawater samples collected during DY031. Sampling and analysis were performed 24 hours a day using Winkler photometric auto-titration following 'Go-Ships' protocols (Langdon, 2010) based on the standard methodologies of Carpenter,1965 adapted for large scale hydrographic studies (e.g. Culberson, 1991 and Dickson, 1995). For more information see the cruise report.


Carpenter, J.H. 1965. The Chesapeake Bay Institute technique for the Winkler dissolved oxygen method. Limnol.and Oceanogr. 10:141-143.

Culberson, C.H. 1991. Dissolved Oxgyen. WHPO Publication 91-1.

Dickson, A.D. 1995. Determination of dissolved oxygen in sea water by Winkler titration. WOCE Operations Manual, Part 3.1.3 Operations and Methods, WHP Office Report WHPO 91-1.

Langdon. C. 2010. Determination of dissolved oxygen in seawater by Winkler titration using the amperometric technique. The GO-SHIP Repeat hydrography manual: A collection of expert reports and guidelines. IOCCP report No.14.

BODC Data Processing Procedures

The sample data were supplied to BODC in MStar format. Data received were loaded into the BODC database using established BODC data banking procedure. Originator's parameters were mapped with BODC codes as follows;

Originator's Parameter Unit Description BODC Parameter code BODC Unit Comments
botoxy µmol/kg Concentration of oxygen {O2 CAS 7782-44-7} per unit mass of the water body [dissolved plus reactive particulate phase] by Winkler titration DOKGWITX µmol/kg n/a
botoxy_per_l µM Concentration of oxygen {O2 CAS 7782-44-7} per unit volume of the water body [dissolved plus reactive particulate phase] by Winkler titration DOXYWITX µM n/a
botoxytemp °C Temperature of oxygen fixation OXYTMP01 °C n/a

Project Information

NOCS National Capability

The National Oceanography Centre Southampton National Capability focuses on long term science concerned with basin/decadal variability of the Ocean.

Data Activity or Cruise Information

Data Activity

Start Date (yyyy-mm-dd) 2015-06-13
End Date (yyyy-mm-dd) 2015-06-13
Organization Undertaking ActivityNational Oceanography Centre, Southampton
Country of OrganizationUnited Kingdom
Originator's Data Activity IdentifierDY031_CTD_DY031_058
Platform Categorylowered unmanned submersible

No Document Information Held for the Series


Cruise Name DY031
Departure Date 2015-05-29
Arrival Date 2015-06-17
Principal Scientist(s)N Penny Holliday (National Oceanography Centre, Southampton)
Ship RRS Discovery

Complete Cruise Metadata Report is available here

Fixed Station Information

Fixed Station Information

Station NameEllett Line/Extended Ellett Line Station M
CategoryOffshore location
Latitude57° 18.00' N
Longitude10° 22.98' W
Water depth below MSL2340.0 m

Ellett Line/Extended Ellett Line: Station M

Station M is one of the fixed CTD stations, which together form The Extended Ellett Line. The line lies between Iceland and the Sound of Mull (Scotland) crossing the Iceland Basin and Rockall Trough via the outcrop of Rockall. As part of this initiative, CTD dips, together with associated discrete sampling of the water column, have typically been carried out annually at this station since September 1996.

Prior to September 1996, Station M was part of a shorter repeated survey section, consisting of 35 fixed stations, known as The Ellett Line (originally termed the Anton Dohrn Seamount Section). This line incorporated those stations across the Rockall Trough and Scottish shelf between Rockall and the Sound of Mull and was visited at regular intervals (usually at least once a year) between 1975 and January 1996.

Related Fixed Station activities are detailed in Appendix 1

BODC Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
Blank Unqualified
< Below detection limit
> In excess of quoted value
A Taxonomic flag for affinis (aff.)
B Beginning of CTD Down/Up Cast
C Taxonomic flag for confer (cf.)
D Thermometric depth
E End of CTD Down/Up Cast
G Non-taxonomic biological characteristic uncertainty
H Extrapolated value
I Taxonomic flag for single species (sp.)
K Improbable value - unknown quality control source
L Improbable value - originator's quality control
M Improbable value - BODC quality control
N Null value
O Improbable value - user quality control
P Trace/calm
Q Indeterminate
R Replacement value
S Estimated value
T Interpolated value
U Uncalibrated
W Control value
X Excessive difference

SeaDataNet Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
0 no quality control
1 good value
2 probably good value
3 probably bad value
4 bad value
5 changed value
6 value below detection
7 value in excess
8 interpolated value
9 missing value
A value phenomenon uncertain
B nominal value
Q value below limit of quantification

Appendix 1: Ellett Line/Extended Ellett Line Station M

Related series for this Fixed Station are presented in the table below. Further information can be found by following the appropriate links.

If you are interested in these series, please be aware we offer a multiple file download service. Should your credentials be insufficient for automatic download, the service also offers a referral to our Enquiries Officer who may be able to negotiate access.

Series IdentifierData CategoryStart date/timeStart positionCruise
89949CTD or STD cast1975-05-04 09:00:0057.3 N, 10.3333 WRRS Challenger CH7A/75
89279CTD or STD cast1975-07-05 20:15:0057.305 N, 10.385 WRRS Challenger CH10A/75
90152CTD or STD cast1975-11-08 22:27:0057.3 N, 10.385 WRRS Challenger CH14A/75
90545CTD or STD cast1976-04-02 18:03:0057.2966 N, 10.3816 WRRS Challenger CH5A/76
91211CTD or STD cast1976-05-21 21:37:0057.2983 N, 10.385 WRRS Challenger CH8/76
90987CTD or STD cast1977-03-07 10:05:0057.3 N, 10.3833 WRRS Challenger CH4/77
92005CTD or STD cast1977-04-15 19:52:0057.3 N, 10.3866 WRRS Challenger CH6B/77
94221CTD or STD cast1977-07-24 10:20:0057.2866 N, 10.3933 WRRS Challenger CH11/77
92527CTD or STD cast1978-02-07 07:05:0057.305 N, 10.3866 WRRS Challenger CH2/78
186086CTD or STD cast1978-08-10 05:30:0057.2983 N, 10.37 WRRS Challenger CH11B/78
190860CTD or STD cast1978-09-12 19:32:0057.2783 N, 10.3816 WRRS Challenger CH11D/78
314428CTD or STD cast1978-11-08 05:08:0057.3083 N, 10.3867 WRRS Challenger CH14B/78
98688CTD or STD cast1979-05-21 06:50:0057.2966 N, 10.3883 WRRS Challenger CH7/79
95955CTD or STD cast1979-09-15 00:05:0057.2766 N, 10.3733 WRRS Challenger CH13/79
187643CTD or STD cast1980-03-02 21:52:0057.3 N, 10.3833 WRRS Challenger CH4/80
188947CTD or STD cast1980-05-04 19:10:0057.3 N, 10.3833 WRRS Challenger CH7/80
312735CTD or STD cast1981-01-31 02:22:0057.3 N, 10.383 WRRS Challenger CH2/81
188382CTD or STD cast1981-04-20 17:25:0057.3016 N, 10.3833 WRRS Challenger CH6B/81
189545CTD or STD cast1982-05-09 20:40:0057.3 N, 10.38 WRRS Challenger CH7B/82
193544CTD or STD cast1983-05-25 17:13:0057.3 N, 10.3866 WRRS Challenger CH7B/83
97022CTD or STD cast1983-08-18 09:40:0057.3 N, 10.385 WRRS Challenger CH11/83
313277CTD or STD cast1984-06-28 07:27:0057.3 N, 10.385 WRRS Challenger CH2/84
253948CTD or STD cast1985-05-09 01:33:0057.3 N, 10.3816 WRRS Challenger CH4/85
261254CTD or STD cast1985-08-20 22:53:0057.3 N, 10.385 WRRS Challenger CH8/85
264227CTD or STD cast1987-01-10 19:27:0057.3 N, 10.3833 WRRS Challenger CH9
250521CTD or STD cast1987-04-29 06:47:0057.3 N, 10.3816 WRRS Challenger CH14
266861CTD or STD cast1988-03-05 23:07:0057.3016 N, 10.385 WRRS Challenger CH25
263906CTD or STD cast1988-06-20 01:05:0057.3 N, 10.385 WRRS Challenger CH30
265415CTD or STD cast1989-01-25 01:46:0057.3 N, 10.3833 WRRS Discovery D180
265913CTD or STD cast1989-05-06 14:02:0057.3 N, 10.3833 WRV Lough Foyle LF1/89
317696CTD or STD cast1989-08-05 16:36:0057.3 N, 10.3833 WRV Lough Foyle LF2/89
316877CTD or STD cast1989-11-26 11:09:0057.3 N, 10.385 WRRS Charles Darwin CD44
315026CTD or STD cast1990-06-27 22:13:0057.2983 N, 10.385 WRRS Challenger CH67A
259784CTD or STD cast1990-09-02 03:57:0057.3 N, 10.3833 WRRS Challenger CH71A
382561CTD or STD cast1991-02-27 06:55:0057.3 N, 10.3833 WRRS Challenger CH75B
316263CTD or STD cast1991-07-03 01:40:0057.3 N, 10.385 WRRS Challenger CH81
386549CTD or STD cast1992-09-27 08:48:0057.3 N, 10.3817 WRRS Challenger CH97
385386CTD or STD cast1993-03-15 21:11:0057.2983 N, 10.385 WRRS Challenger CH101B
385675CTD or STD cast1993-05-15 23:24:0057.3 N, 10.3833 WRRS Challenger CH103
387817CTD or STD cast1993-09-07 04:08:0057.3012 N, 10.4033 WRRS Challenger CH105
389129CTD or STD cast1994-03-18 19:32:0057.3 N, 10.3833 WRRS Challenger CH110
389295CTD or STD cast1994-05-03 05:04:0057.3 N, 10.3833 WRRS Challenger CH112
390874CTD or STD cast1994-08-17 21:10:0057.3 N, 10.3833 WRRS Challenger CH114
392033CTD or STD cast1994-11-25 04:30:0057.3 N, 10.3833 WRRS Challenger CH116
392045CTD or STD cast1994-11-25 05:32:0057.3 N, 10.3833 WRRS Challenger CH116
435157CTD or STD cast1995-04-22 05:00:0057.3 N, 10.3833 WRRS Charles Darwin CD92B
435354CTD or STD cast1995-04-29 17:48:0057.3 N, 10.3833 WRRS Charles Darwin CD92B
390500CTD or STD cast1995-07-31 06:29:0057.2988 N, 10.3842 WRRS Challenger CH120
434105CTD or STD cast1996-01-13 10:51:0057.3 N, 10.3833 WRRS Challenger CH124
1014620CTD or STD cast1996-10-01 11:41:0057.30533 N, 10.37583 WRRS Discovery D223A
1850120Water sample data1996-10-01 12:51:0057.3054 N, 10.37583 WRRS Discovery D223A
1008036CTD or STD cast1997-09-13 23:35:0057.28417 N, 10.39633 WRRS Discovery D230
1305017Water sample data1997-09-14 00:35:0057.28424 N, 10.39631 WRRS Discovery D230
1020649CTD or STD cast1998-05-26 06:49:0057.29883 N, 10.38567 WRRS Discovery D233
1306291Water sample data1998-05-26 07:50:0057.29879 N, 10.38565 WRRS Discovery D233
1849456Water sample data1998-05-26 07:50:0057.29879 N, 10.38565 WRRS Discovery D233
1076980CTD or STD cast1999-06-01 10:47:0057.2995 N, 10.39783 WNot applicable
1070702CTD or STD cast1999-09-12 13:46:0057.2945 N, 10.37167 WRRS Discovery D242
1252039Water sample data1999-09-12 14:23:0057.2945 N, 10.37167 WRRS Discovery D242
1075190CTD or STD cast2000-02-04 04:50:0057.29917 N, 10.3985 WRRS Discovery D245
559161CTD or STD cast2000-05-18 17:14:0057.2967 N, 10.3817 WFRV Scotia 0700S
1230450Water sample data2000-05-18 17:14:0057.29767 N, 10.38317 WFRV Scotia 0700S
676847CTD or STD cast2001-05-20 21:47:0057.2895 N, 10.3765 WRRS Discovery D253
626746CTD or STD cast2003-04-18 07:55:0057.3002 N, 10.384 WFRV Scotia 0703S
845003CTD or STD cast2003-07-22 22:14:0057.29938 N, 10.3825 WFS Poseidon PO300_2
667113CTD or STD cast2004-07-13 19:55:0057.3015 N, 10.38233 WFS Poseidon PO314
896457CTD or STD cast2005-10-10 22:50:0057.30272 N, 10.38124 WRRS Charles Darwin CD176
776615CTD or STD cast2006-10-25 15:41:0657.30333 N, 10.379 WRRS Discovery D312
847464CTD or STD cast2007-08-29 22:23:3657.29953 N, 10.3795 WRRS Discovery D321B
880873CTD or STD cast2008-05-22 18:54:0057.30167 N, 10.38117 WFRV Scotia 0508S
1616891Water sample data2008-05-22 18:54:0057.30167 N, 10.38117 WFRV Scotia 0508S
954321CTD or STD cast2009-06-20 01:00:1157.30187 N, 10.38222 WRRS Discovery D340A
1052768CTD or STD cast2010-05-20 07:28:2957.28717 N, 10.38133 WRRS Discovery D351
1929991Currents -subsurface Eulerian2010-05-20 07:29:1157.2955 N, 10.3847 WRRS Discovery D351
1896812Water sample data2010-05-20 08:28:0057.2854 N, 10.37933 WRRS Discovery D351
1195794CTD or STD cast2011-05-31 01:49:1657.28767 N, 10.386 WRRS Discovery D365
1203507CTD or STD cast2012-08-04 05:05:0057.29853 N, 10.38556 WRRS Discovery D379
1220443CTD or STD cast2013-05-20 01:18:4157.2984 N, 10.3904 WRRS James Cook JC086
1220584CTD or STD cast2013-05-22 09:35:1957.2976 N, 10.3853 WRRS James Cook JC086
1371192CTD or STD cast2014-07-15 17:13:4357.3002 N, 10.3824 WRRS James Clark Ross JR20140531 (JR302)
1723329CTD or STD cast2015-06-13 06:06:5557.2996 N, 10.384 WRRS Discovery DY031
1722418Currents -subsurface Eulerian2015-06-13 06:07:2257.29964 N, 10.38408 WRRS Discovery DY031
1764612CTD or STD cast2016-06-16 23:34:0057.2989 N, 10.386 WRRS Discovery DY052
1765744Currents -subsurface Eulerian2016-06-16 23:34:1957.29866 N, 10.38624 WRRS Discovery DY052
1874945Water sample data2016-06-17 00:29:0057.29864 N, 10.38626 WRRS Discovery DY052
1765793Currents -subsurface Eulerian2016-06-18 18:48:4057.2458 N, 10.3516 WRRS Discovery DY052
1764661CTD or STD cast2016-06-18 18:52:0657.2458 N, 10.3516 WRRS Discovery DY052
1976013CTD or STD cast2017-05-17 08:18:5357.2953 N, 10.3728 WRRS Discovery DY078 (DY079)
1976025CTD or STD cast2017-05-17 12:31:2457.2972 N, 10.3757 WRRS Discovery DY078 (DY079)