Metadata Report for BODC Series Reference Number 1008430


Metadata Summary

Data Description

Data Category CTD or STD cast
Instrument Type
NameCategories
Neil Brown MK3 CTD  CTD; water temperature sensor; salinity sensor; dissolved gas sensors
Instrument Mounting lowered unmanned submersible
Originating Country United Kingdom
Originator Dr Sheldon Bacon
Originating Organization Southampton Oceanography Centre (now National Oceanography Centre, Southampton)
Processing Status banked
Project(s) WOCE
UK WOCE
 

Data Identifiers

Originator's Identifier A25CTD128
BODC Series Reference 1008430
 

Time Co-ordinates(UT)

Start Time (yyyy-mm-dd hh:mm) 1997-09-12 06:01
End Time (yyyy-mm-dd hh:mm) -
Nominal Cycle Interval 2.0 decibars
 

Spatial Co-ordinates

Latitude 58.86300 N ( 58° 51.8' N )
Longitude 17.00733 W ( 17° 0.4' W )
Positional Uncertainty 0.0 to 0.01 n.miles
Minimum Sensor Depth 0.99 m
Maximum Sensor Depth 1144.99 m
Minimum Sensor Height 12.5 m
Maximum Sensor Height 1156.51 m
Sea Floor Depth 1157.5 m
Sensor Distribution Variable common depth - All sensors are grouped effectively at the same depth, but this depth varies significantly during the series
Sensor Depth Datum Instantaneous - Depth measured below water line or instantaneous water body surface
Sea Floor Depth Datum Instantaneous - Depth measured below water line or instantaneous water body surface
 

Parameters

BODC CODE Rank Units Short Title Title
DOXYPR01 1 Micromoles per litre WC_dissO2_Beck Concentration of oxygen {O2 CAS 7782-44-7} per unit volume of the water body [dissolved plus reactive particulate phase] by in-situ Beckmann probe
OXYSBB01 1 Percent BKBeck Saturation of oxygen {O2 CAS 7782-44-7} in the water body [dissolved plus reactive particulate phase] by in-situ Beckmann probe and computation from concentration using Benson and Krause algorithm
POTMCV01 1 Degrees Celsius WC_Potemp Potential temperature of the water body by computation using UNESCO 1983 algorithm
PRESPR01 1 Decibars Pres_Z Pressure (spatial co-ordinate) exerted by the water body by profiling pressure sensor and corrected to read zero at sea level
PSALST01 1 Dimensionless P_sal_CTD Practical salinity of the water body by CTD and computation using UNESCO 1983 algorithm
SIGTPR01 1 Kilograms per cubic metre SigTheta Sigma-theta of the water body by CTD and computation from salinity and potential temperature using UNESCO algorithm
TEMPST01 1 Degrees Celsius WC_temp_CTD Temperature of the water body by CTD or STD
 

Definition of Rank

  • Rank 1 is a one-dimensional parameter
  • Rank 2 is a two-dimensional parameter
  • Rank 0 is a one-dimensional parameter describing the second dimension of a two-dimensional parameter (e.g. bin depths for moored ADCP data)

Problem Reports

No Problem Report Found in the Database


Data Access Policy

Open Data supplied by Natural Environment Research Council (NERC)

You must always use the following attribution statement to acknowledge the source of the information: "Contains data supplied by Natural Environment Research Council."


Narrative Documents

Neil Brown MK3 CTD

The Neil Brown MK3 conductivity-temperature-depth (CTD) profiler consists of an integral unit containing pressure, temperature and conductivity sensors with an optional dissolved oxygen sensor in a pressure-hardened casing. The most widely used variant in the 1980s and 1990s was the MK3B. An upgrade to this, the MK3C, was developed to meet the requirements of the WOCE project.

The MK3C includes a low hysteresis, titanium strain gauge pressure transducer. The transducer temperature is measured separately, allowing correction for the effects of temperature on pressure measurements. The MK3C conductivity cell features a free flow, internal field design that eliminates ducted pumping and is not affected by external metallic objects such as guard cages and external sensors.

Additional optional sensors include pH and a pressure-temperature fluorometer. The instrument is no longer in production, but is supported (repair and calibration) by General Oceanics.

Specifications

These specification apply to the MK3C version.

Pressure Temperature Conductivity
Range

6500 m

3200 m (optional)

-3 to 32°C 1 to 6.5 S cm -1
Accuracy

0.0015% FS

0.03% FS < 1 msec

0.0005°C

0.003°C < 30 msec

0.0001 S cm -1

0.0003 S cm -1 < 30 msec

Further details can be found in the specification sheet .

RRS Discovery 230 CTD Data Documentation

Introduction

CTD profile data are presented from the FOUREX cruise Discovery 230, as reported by Bacon et al. (1998).

Instrumentation and Methodology

Instrumentation Summary

The CTD profiles were taken with Neil Brown Systems MkIIIb/c CTDs (Deep01 and Deep02) mounted beneath a bottle rosette. Both CTDs are MkIIIb instruments converted to a MkIIIc format. Deep02 was specially modified to accept data from two FSI modules: one Platinum Resistance Thermometer Module FSI OTM-D-112 s/n 1325-011592, and one Conductivity Module FSI OCM-D-112 s/n 1333-011592. These mount on a specially modified 10 litre GO water bottle. The CTD was fitted with a dissolved oxygen sensor, a Chelsea Instruments fluorometer s/n 88/2050/95, a Chelsea Instruments Transmissometer s/n 161/2642/003, and a Simrad altimeter (model 807-200m).

Data Acquisition

Lowering rates for the CTD package were generally in the range 0.5-1.0ms -1 but could be up to 1.5ms -1 . CTD data were logged at 16 frames per second. The CTD deck unit passes raw data to a dedicated Level A microcomputer where 1 second averages are assembled. During this process the Level A calculates the rate of change of temperature and a median sorting routine detects and removes pressure spikes. These data are sent to the Level B for archival. The data are then passed to a Level C workstation for conversion to Pstar format and calibration.

A total of 143 stations were occupied. The first 135 stations were occupied using Deep01. For the remaining stations, 136 - 143, Deep02 was used. No CTD oxygen data were measured using Deep02.

Data Processing

The 1 second data passed to the Level C were converted to Pstar format and initially calibrated with coefficients from laboratory calibrations followed by a number of calibration corrections. The up and down cast data were extracted for merging with the bottle firing codes, thus the CTD variables were reconciled with the bottle samples. Final calibrations were applied using the sample bottle data. Finally, down cast data were extracted, sorted on pressure and averaged to 2db values.

The data were worked up to WOCE standards by the data originators before being supplied to BODC.

BODC Data Processing

No further calibrations were applied to the data received by BODC. BODC were mainly concerned with the screening and banking of the data.

The CTD data were received as 2db, pressure sorted, down cast data. Parameters were pressure (dbar), temperature (its-90), salinity (pss-78) and oxygen (µmol/kg). BODC have not received the fluorometer or transmissometer data.

The data were converted into the BODC internal format (a subset of NetCDF) to allow the use of in-house software tools, notably the graphics editor. Oxygen was converted to umol/l. Spikes in the data were manually flagged 'suspect' by modification of the associated quality control flag. In this way none of the original data values were edited or deleted during quality control.

The temperature, salinity and oxygen data from cruise D230 required little flagging and just a few points were set suspect. Profiles 093 and 102 were cold with low salinity. The oxygen profile for 001 has an unusual feature at ~2000db that has been flagged suspect.

Once screened, the CTD data were loaded into a database under the Oracle relational database management system. The start time stored in the database is the CTD deployment time, and the end time is the time the CTD was removed from the water. Actually these times are more precisely the start and end of data logging. Latitude and longitude are the mean positions between the start and end times calculated from the master navigation in the binary merged file.

References

Bacon, S. et al. (1998). RRS Discovery Cruise 230. Southampton Oceanography Centre, Cruise Report No. 16, 104pp.


Project Information

World Ocean Circulation Experiment (WOCE)

The World Ocean Circulation Experiment (WOCE) was a major international experiment which made measurements and undertook modelling studies of the deep oceans in order to provide a much improved understanding of the role of ocean circulation in changing and ameliorating the Earth's climate.

WOCE had two major goals:


UK WOCE

The UK made a substantial contribution to the international World Ocean Circulation Experiment (WOCE) project by focusing on two important regions:

  1. Southern Ocean - links all the worlds oceans, controlling global climate.
  2. North Atlantic - directly affects the climate of Europe.

A major part of the UK effort was in the Southern Ocean and work included:

In the North Atlantic the UK undertook:

Satellite ocean surface topography, temperature and wind data were merged with in situ observations and models to create a complete description of ocean circulation, eddy motion and the way the ocean is driven by the atmosphere.

The surveys were forerunners to the international Global Ocean Observing System (GOOS). GOOS was later established to monitor annual to decadal changes in ocean circulation and heat storage which are vital in the prediction of climate change.


Data Activity or Cruise Information

Cruise

Cruise Name D230
Departure Date 1997-08-07
Arrival Date 1997-09-17
Principal Scientist(s)Sheldon Bacon (Southampton Oceanography Centre)
Ship RRS Discovery

Complete Cruise Metadata Report is available here


Fixed Station Information

Fixed Station Information

Station NameExtended Ellett Line
CategoryOffshore route/traverse

Extended Ellett Line

The Extended Ellett Line is a hydrographic transect consisting of 64 individual fixed stations which have been occupied, typically on an annual basis, since September 1996. The Line runs from the south of Iceland, across the Iceland Basin to the outcrop of Rockall, and across the Rockall Trough to the north west coast of Scotland (see map). CTD dips and associated water sampling for the analysis of nutrients are routinely performed during each station occupation.

The Extended Ellett Line augments the original Ellett Line time series - a shorter repeated transect which encompassed those stations between Rockall and Scotland. Work on the Ellett Line was typically carried out at least once a year between 1975 and 1996.

Map of standard stations (1996-present)

BODC image

Map produced using the GEBCO Digital Atlas

The white triangles indicate the nominal positions of the Extended Ellett Line stations visited since September 1996. Measurements made along the Extended Ellett Line lie within a box bounded by co-ordinates 56° N, 21° W at the south west corner and 65° N, 6° W at the north east corner.

Nominal Extended Ellett Line stations (September 1996-present)

Listed below are nominal details of the standard hydrographic stations that form the Extended Ellett Line. The majority of these stations have been sampled since the outset, although several have been added more recently.

Station Latitude Longitude Depth Range
IB23S 63.318 N 20.210 W 125 m -
IB22S 63.217 N 20.067 W 660 m 0.0 nm
IB21S 63.133 N 19.917 W 1030 m 6.5 nm
IB20S 62.917 N 19.550 W 1415 m 16.4 nm
IB19S 62.667 N 19.667 W 1500 m 16.0 nm
IB18S 62.333 N 19.833 W 1800 m 16.0 nm
IB17 62.000 N 20.000 W 1700 m 20.6 nm
IB16A 61.750 N 20.000 W 1797 m -
IB16 61.500 N 20.000 W 2000 m 30.1 nm
IB15 61.250 N 20.000 W 2375 m 15.0 nm
IB14 61.000 N 20.000 W 2400 m 15.0 nm
IB13A 60.750 N 20.000 W 2500 m -
IB13 60.500 N 20.000 W 2500 m 30.1 nm
IB12A 60.250 N 20.000 W 2600 m -
IB12 60.000 N 20.000 W 2700 m 30.1 nm
IB11A 59.833 N 19.500 W 2700 m -
IB11 59.667 N 19.117 W 2680 m 33.3 nm
IB10 59.400 N 18.417 W 2420 m 26.7 nm
IB9 59.333 N 18.233 W 1910 m 6.9 nm
IB8 59.200 N 17.883 W 1540 m 13.4 nm
IB7 59.117 N 17.667 W 1000 m 8.3 nm
IB6 58.950 N 17.183 W 850 m 18.0 nm
IB5 58.883 N 17.000 W 1150 m 7.0 nm
IB4A 58.667 N 16.500 W 1170 m -
IB4 58.500 N 16.000 W 1210 m 38.8 nm
IB3 58.250 N 15.333 W 680 m 25.8 nm
IB2 57.950 N 14.583 W 480 m 29.9 nm
IB1 57.667 N 13.900 W 160 m 27.7 nm
A 57.583 N 13.633 W 130 m 10.0 nm
B 57.567 N 13.333 W 210 m 9.7 nm
C 57.550 N 13.000 W 330 m 10.8 nm
D 57.542 N 12.867 W 1000 m 4.3 nm
E 57.533 N 12.633 W 1658 m 7.6 nm
F 57.508 N 12.250 W 1817 m 12.5 nm
G 57.492 N 11.850 W 1812 m 13.0 nm
H 57.483 N 11.533 W 2020 m 10.3 nm
I 57.467 N 11.317 W 750 m 7.0 nm
J 57.450 N 11.083 W 550 m 7.6 nm
K 57.400 N 10.867 W 850 m 7.6 nm
L 57.367 N 10.667 W 2076 m 6.8 nm
M 57.300 N 10.383 W 2340 m 10.1 nm
N 57.233 N 10.050 W 2100 m 11.5 nm
O 57.150 N 9.700 W 1900 m 12.4 nm
P 57.100 N 9.417 W 1050 m 9.7 nm
Q 57.050 N 9.217 W 350 m 7.2 nm
Q1 57.075 N 9.317 W 800 m -
R 57.000 N 9.000 W 135 m 7.7 nm
S 56.950 N 8.783 W 125 m 7.7 nm
15G 56.883 N 8.500 W 125 m 10.1 nm
T 56.837 N 8.333 W 120 m 6.1 nm
14G 56.808 N 8.167 W 115 m 5.7 nm
13G 56.783 N 8.000 W 110 m 5.7 nm
12G 56.758 N 7.833 W 80 m 5.7 nm
11G 56.733 N 7.667 W 55 m 5.7 nm
10G 56.733 N 7.500 W 220 m 5.5 nm
9G 56.733 N 7.333 W 160 m 5.5 nm
8G 56.733 N 7.167 W 175 m 5.5 nm
7G 56.733 N 7.000 W 145 m 5.5 nm
6G 56.733 N 6.750 W 35 m 8.2 nm
5G 56.733 N 6.600 W 75 m 4.9 nm
4G 56.733 N 6.450 W 115 m 4.9 nm
3G 56.708 N 6.367 W 75 m 3.1 nm
2G 56.683 N 6.283 W 40 m 3.2 nm
1G 56.667 N 6.133 W 190 m 5.0 nm

Occupations of the Extended Ellett Line (September 1996-present)

BODC Cruise Identifier Cruise Dates Ship
D223A 28 September-21 October 1996 RRS Discovery
D230 7 August-17 September 1997 RRS Discovery
D233 23 April-1 June 1998 RRS Discovery
D242 7 September-6 October 1999 RRS Discovery
D245 * 27 January-20 February 2000 RRS Discovery
0700S * 8-22 May 2000 FRV Scotia
D253 4 May-20 June 2001 RRS Discovery
0703S * 15 April-5 May 2003 FRV Scotia
PO300_2 * 19 July-6 August 2003 RRS Poseidon
PO314 11 July-23 July 2004 RV Poseidon
CD176 6 October-1 November 2005 RRS Charles Darwin
D312 11-31 October 2006 RRS Discovery
D321A 24 July-23 August 2007 RRS Discovery
D321B 24 August-9 September 2007 RRS Discovery
0508S * 6-25 May 2008 FRV Scotia
D340A 10-25 June 2009 RRS Discovery
D351 10-28 May 2010 RRS Discovery
D365 13 May-02 June 2011 RRS Discovery
D379 31 July-17 August 2012 RRS Discovery
JC086 6-26 May 2013 RRS James Cook
JR302 6 June-22 July 2014 RRS James Clark Ross
DY031 29 May- 17 June 2015 RRS Discovery
DY052 7-24 June 2016 RRS Discovery

* These cruises only surveyed the original hydrographic section between Scotland and Rockall.

Other Series linked to this Fixed Station for this cruise - 1007936 1007948 1007961 1007973 1007985 1007997 1008000 1008012 1008024 1008036 1008048 1008061 1008073 1008085 1008097 1008269 1008270 1008282 1008294 1008301 1008313 1008325 1008337 1008349 1008350 1008362 1008374 1008386 1008398 1008405 1008417 1008429 1304745 1304757 1304769 1304770 1304782 1304794 1304801 1304813 1304825 1304837 1304849 1304850 1304862 1304874 1304886 1304898 1304905 1304917 1304929 1304930 1304942 1304954 1304966 1304978 1304991 1305005 1305017 1305029 1305030 1305042 1305054 1305066

Other Cruises linked to this Fixed Station (with the number of series) - 0508S (58) 0700S (30) 0703S (20) CD176 (40) D223A (22) D233 (49) D242 (89) D245 (25) D253 (41) D312 (51) D321 (D321A) (7) D321B (41) D340A (58) D351 (23) D365 (55) D379 (64) DY052 (144) JC086 (59) JR20140531 (JR302) (75) PO300_2 (31) PO314 (53)

Fixed Station Information

Station NameExtended Ellett Line Station IB5
CategoryOffshore location
Latitude58° 52.98' N
Longitude17° 0.00' W
Water depth below MSL1150.0 m

Extended Ellett Line: Fixed Station IB5

Station IB5 is one of the fixed CTD stations, which together form The Extended Ellett Line. The line lies between Iceland and the Sound of Mull (Scotland) crossing the Iceland Basin and Rockall Trough via the outcrop of Rockall. As part of this initiative, CTD dips, together with associated discrete sampling of the water column, have typically been carried out annually at this station since September 1996.

Other Series linked to this Fixed Station for this cruise - 1304917

Other Cruises linked to this Fixed Station (with the number of series) - D242 (2) D253 (1) D321B (1) D340A (1) D351 (1) D365 (1) D379 (1) DY031 (2) DY052 (2) JC086 (1) JR20140531 (JR302) (1) PO314 (1)


BODC Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
Blank Unqualified
< Below detection limit
> In excess of quoted value
A Taxonomic flag for affinis (aff.)
B Beginning of CTD Down/Up Cast
C Taxonomic flag for confer (cf.)
D Thermometric depth
E End of CTD Down/Up Cast
G Non-taxonomic biological characteristic uncertainty
H Extrapolated value
I Taxonomic flag for single species (sp.)
K Improbable value - unknown quality control source
L Improbable value - originator's quality control
M Improbable value - BODC quality control
N Null value
O Improbable value - user quality control
P Trace/calm
Q Indeterminate
R Replacement value
S Estimated value
T Interpolated value
U Uncalibrated
W Control value
X Excessive difference

SeaDataNet Quality Control Flags

The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:

Flag Description
0 no quality control
1 good value
2 probably good value
3 probably bad value
4 bad value
5 changed value
6 value below detection
7 value in excess
8 interpolated value
9 missing value
A value phenomenon uncertain