Metadata Report for BODC Series Reference Number 2205966
Metadata Summary
Problem Reports
Data Access Policy
Narrative Documents
Project Information
Data Activity or Cruise Information
Fixed Station Information
BODC Quality Flags
SeaDataNet Quality Flags
Metadata Summary
Data Description |
|||||||||||||||||||||||||
|
|||||||||||||||||||||||||
Data Identifiers |
|||||||||||||||||||||||||
|
|||||||||||||||||||||||||
Time Co-ordinates(UT) |
|||||||||||||||||||||||||
|
|||||||||||||||||||||||||
Spatial Co-ordinates | |||||||||||||||||||||||||
|
|||||||||||||||||||||||||
Parameters |
|||||||||||||||||||||||||
|
|||||||||||||||||||||||||
|
Problem Reports
Chlorophyll
Post deployment, a calibration against the CTD fluorometer revealed that the Turner Cyclops fluorometer was recording at a 10 x gain (below 50 m). This was corrected by wet chemistry, using the calibration from the RRS Discovery Cruise DY050 cruise report draft. Data diverged at the end of the deployment due to a slight amount of bio-fouling. The wiper was not working when the mooring was recovered. It was estimated that the operation failed a few weeks before recovery. Please see the DY050 cruise report for further detail.
BODC flag M hs been applied to a single spike in chlorophyll concentration data (CHLTVOLU), this was the value of 0.41 mg/m3 recorded at 22:30 on 11/12/2015.
BODC flag M has also been applied to all values of CHLTVOLU below 0 mg/m3 (4 cycles out of 7174). Values for chlorophyll concentration below 0 mg/m3 are outside of BODC parameter limits, indicating there may be a problem with the data.
CHLTVOLU was recorded by the following instrument: Turner Designs Cyclops-7F fluorometer.
Data Access Policy
Open Data
These data have no specific confidentiality restrictions for users. However, users must acknowledge data sources as it is not ethical to publish data without proper attribution. Any publication or other output resulting from usage of the data should include an acknowledgment.
If the Information Provider does not provide a specific attribution statement, or if you are using Information from several Information Providers and multiple attributions are not practical in your product or application, you may consider using the following:
"Contains public sector information licensed under the Open Government Licence v1.0."
Narrative Documents
Turner Designs Cyclops-7F fluorometer
A high performance in situ fluorometer which can be configured and factory scaled for various fluorometric analyses. These include detection of blue-green algae (phycocyanin, phycoerythrin), CDOM/FDOM, fluroescent dye tracing (fluorescein, rhodamine, PTSA), hydrocarbons (crude oil, refined fuels), wastewater monitoring (optical brighteners, tryptophan), turbidity, and chlorophyll in vivo (blue excitation, red excitation). Custom optics are available between 260-900 nm. Depending on the configuration, the Cyclops-7F has a minimum detection limit ranging from 0.1-3 ppb and a linear range between 0-20 ppm and 0-5000 ppb. The instrument can be used in depths up to 600 m and in water temperatures of -2 to 50 degC.
For more information, please see this document: https://www.bodc.ac.uk/data/documents/nodb/pdf/Turner_Cyclops7F_fluorometer.pdf
PAP1 Mooring Turner Cyclops Fluorometer: DY032 BODC Data Processing
The mooring was deployed on the RRS Discovery Cruise DY032 (01/07/2015) and recovered by the RRS Discovery Cruise DY050 (25/04/2016), at the Porcupine Abyssal Plain - Sustained Observatory (PAP-SO) site in the North East Atlantic ocean. The Cyclops Turner fluorometer (SN 2103960) was mounted to the Aanderaa Seaguard platform (SN 1614) on the frame at 30m with a ZebraTech wiper set to activate every 6 hours. Data diverged at the end of the deployment due to a slight amount of bio-fouling. The wiper was not working when the mooring was recovered. It was estimated that the operation failed a few weeks before recovery.
The data were supplied to BODC in .xlsx format. This was converted to a .csv format by BODC. The data were then loaded into BODC's database using established BODC data banking procedures. For more information on the deployment of these instruments please see the DY032 cruise report.
The originator variables were mapped to appropriate BODC parameter codes as follows:
Originator's Variable | Originator's Units | BODC Parameter Code | BODC Units | Comment |
---|---|---|---|---|
Corr. Chlorophyll #2103960(ug/L) | ug/L | CHLTVOLU | mg/m3 | Equivalent units - measured on Turner Cyclops Fluorometer (SN: 2103960). Calibrated against a WETlabs sensor (SN 30250) on a CTD cast. Post deployment correction was applied by wet chemistry using the calibration from the RRS Discovery Cruise DY050 cruise report draft. |
The reformatted data were visualised using in-house EDSERPLO software. Any suspect data were flagged using the BODC quality control flags.
PAP1 Mooring Turner Cyclops Fluorometer: DY032 Originator Data Processing
The mooring was deployed on the RRS Discovery Cruise DY032 (01/07/2015) and recovered by the RRS Discovery Cruise DY050 (25/04/2016), at the Porcupine Abyssal Plain - Sustained Observatory (PAP-SO) site in the North East Atlantic ocean.
Prior to the mooring deployment, the Seaguard was deployed on CTD (conductivity, temperature and depth) cast 020 (25/06/2015) in order to calibrate the oxygen optode and fluorometer against the CTD sensors. The CTD cast went down to 200 m. The Turner Cyclops fluorometer was calibrated against the WETlabs sensor (SN 30250), which was mounted on the base of the CTD.
During this deployment, the Cyclops Turner fluorometer (SN 2103960) was secured to the Aanderaa Seaguard platform (SN 1614), along with an Aanderaa 4339 oxygen optode (SN 2001) and a DCS current meter (SN 685). The Seaguard was set-up and secured in its pressure housing. The unit was then integrated into the sensor frame to be positioned at 30m and armed to start operating before deployment, to ensure correct communication to the Hub. It began operating at 12.30 on 27/06/2015. The Cyclops Turner fluorometer was mounted in a ZebraTech wiper set to activate every 6 hours. It was started at 14.00 on 28/06/2015 so that the wiper would activate on the hour, minimising the chance a wipe would happen at the same time as a measurement by the fluorometer.
Post deployment, a calibration against the CTD fluorometer revealed that the Turner Cyclops fluorometer was recording at a 10 x gain (below 50 m). This was corrected by wet chemistry, using the calibration from the RRS Discovery Cruise DY050 cruise report draft.
Data diverged at the end of the deployment due to a slight amount of bio-fouling. The wiper was not working when the mooring was recovered. It was estimated that the operation failed a few weeks before recovery.
Please see the DY032 cruise report and DY050 cruise report for further detail of originators processing.
RRS Discovery Cruise DY032 Turner Cyclops Fluorometer Data Quality Report
Post deployment, a calibration against the CTD fluorometer revealed that the Turner Cyclops fluorometer was recording at a 10 x gain (below 50 m). This was corrected by wet chemistry, using the calibration from the RRS Discovery Cruise DY050 cruise report draft. Data diverged at the end of the deployment due to a slight amount of bio-fouling. The wiper was not working when the mooring was recovered. It was estimated that the operation failed a few weeks before recovery. Please see the DY050 cruise report for further detail.
BODC flag M has been applied to a single spike in chlorophyll concentration data (CHLTVOLU), this was the value of 0.41 mg/m3 recorded at 22:30 on 11/12/2015.
BODC flag M has also been applied to all values of CHLTVOLU below 0 mg/m3 (4 cycles out of 7174). Values for chlorophyll concentration below 0 mg/m3 are outside of BODC parameter limits, indicating there may be a problem with the data.
CHLTVOLU was recorded by the following instrument: Turner Designs Cyclops-7F fluorometer.
Project Information
Fix03 - Fixed-Point Open Ocean Observatories
Fixed point Open Ocean Observatory network (FixO3) is a EUR7 million, four-year (2013-2017) research programme network including 29 partners from academia, research institutions and small and medium enterprises (SME). In addition, 12 international experts from a wide range of disciplines comprise an Advisory Board.
Background
FixO3 is coordinated by the National Oceanography Centre, UK, and seeks to integrate European open ocean fixed point observatories and to improve access to these key installations for the broader community. These will provide multidisciplinary observations in all parts of the oceans from the air-sea interface to the deep seafloor. FixO3 will build on the significant advances achieved through the FP7 programmes EuroSITES, ESONET and CARBOOCEAN.
Open ocean observation is currently a high priority for European marine and maritime activities. FixO3 will provide important data on environmental products and services to address the Marine Strategy Framework Directive and in support of the EU integrated Maritime Policy.
The FixO3 network will provide free and open access to in situ fixed point data of the highest quality. It will provide a strong integrated framework of open ocean facilities in the Atlantic from the Arctic to the Antarctic and throughout the Mediterranean, enabling an integrated, regional and multidisciplinary approach to understand natural and anthropogenic change in the ocean.
The programme will be achieved through:
1. Co-ordination activities to integrate and harmonise the current procedures and processes. Strong links will be fostered with the wider community across academia, industry, policy and the general public through outreach, knowledge exchange and training.
2. Support actions to offer a) access to observatory infrastructures to those who do not have such access, and b) free and open data services and products.
3. Joint research activities to innovate and enhance the current capability for multidisciplinary in situ ocean observation.
Further details are available on the FixO3 website.
Participants
29 different partners involved in FixO3. These institutions are;
- Natural Environment Research Council (NERC)
- Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS)
- Hellenic Centre for Marine Research (HCMR)
- MARUM, Unviersity of Bremen (UniHB)
- Universitetet I Bergen (UiB)
- Universitetet I Tromsø (UiT)
- Alfred Wegener Institut für Polarund Meeresforschung (AWI)
- University of Exeter (UNEXE)
- SLR Consulting (SLR)
- Institut français de recherché pour l'exploitation de la mer (IFREMER)
- Blue Lobster IT ltd. (BLIT)
- Istituto Nazionale di Geofisica e Vulcanologia (INGV)
- Marine Institute (MI)
- The University Court of The University of Aberdeen (UNIABDN)
- Centre National de la Recherche Scientifique (CNRS)
- GEOMAR Helmholtz Centre for Ocean Research Kiel (GEOMAR)
- Universidad de las Palmas de Gran Canaria (ULPGC)
- University of St Andrew (USTAN)
- Spanish Institute of Oceanography (IEO)
- NKE Instrumentation (NKEI)
- Instituto Nacional de Desenvolvimento das Pescas (INDP)
- Universitat Politècnica de Catalunya (UPC)
- Texcel Technology Plc (TEXCEL)
- University of Gothenburg (UGOT)
- 52°North(52°North)
- Consiglio Nazionale delle Richerche (CNR)
- Stichting Koninklijk Nederlands Instituut Voor Zeeonderzoek (NIOZ)
- Imar- Instituto do Mar (IMAR)
Research details
Overall, twelve Work Packages have been funded by the FixO3 programme. These are described in brief below:
-
Work Package 1: Project Management.
- To effectively manage FixO3 to maximise the production of results in the most cost effective manner and to the proposed timescales.
- To facilitate communication and integration between the partners and disseminate information about the project to the wider community.
- To identify and resolve disputes between partners.
- To keep the project on track, and ensure timely interaction and delivery of reports to the European Commission. -
Work Package 2: Technical harmonization.
- To review the current status of existing systems in operational use considered in the project;
- To synthesize the characteristics of infrastructures offering TNA;
- To increase the high-frequency measurements on fixed platforms;
- To define the best technical practices for compatible, robust and cost-effective systems on a variety of fixed applications;
- To promote tests of new or prototype instruments on a non-operational basis;
- To define procedure for harmonizing and merging quality assessed high frequency fixed platform data;
- To define procedures and technological solutions for integration and testing of new sensors on these systems;
- To increase the traceability, quality and reliability of sensor metadata and data products. -
Work Package 3: Procedural harmonization.
To harmonise procedures across the network the following steps will be undertaken:
1) Assessment of operational procedures for sustained Eulerian observations
2) Further development of principles of 'best practice'
3) Development of the FixO3 observatories 'label' building on ESONET and in collaboration with JERICO
-
Work Package 4: Data management and harmonization.
To harmonise data policies and to provide a formal basis for data exchange between FixO3 infrastructures.
- To improve standardisation, interoperability and compliance with major international initiatives
- To harmonise data management and standardisation efforts with other European and international marine data and observatory infrastructures.
- To foster the cooperation with the marine carbon observation community by disseminating FixO3 data via relevant international infrastructures and data centres such as the ICOS Ocean Thematic Centre
To coordinate, harmonise and optimize the implementation and integration of Service Activities provided by the different partners in WP10 and to strengthen and monitor the dissemination of knowledge. -
Work Package 5: Innovation through industry.
- Promote interaction between the ocean observatory research community and the commercial sector
- Proactively promote FixO3 and wider open ocean observatory products and services to the commercial sector
- Identify innovative products and services within the ocean observatory community and develop targeted IPR agreements to encourage interest by the commercial sector. -
Work Package 6: Interface with policy and intergovernmental bodies.
- To link the FixO3 efforts to international and intergovernmental bodies and activities.
- To ensure visibility and facilitate further implementation and long-term stewardship of deep-ocean fixed-point time series observations
- To develop a strategy for the future. -
Work Package 7: International and European networking of fixed-point observatories
- To consolidate and promote the synergy between European research groups and institutions.
- To enhance the interaction with industry
- To link ocean scientists and engineers into an international team in marine science.
- Management of TNA activities. -
Work Package 8: Outreach and training.
- To engage with, educate and inform public, scientific and policy user groups.
- To develop an informative and interactive suite of complimentary tools that educates and engages public, scientific and policy user groups to maximise engagement with end users.
- To produce educational and informational resources that deliver knowledge to end user groups
- To deliver a series of training opportunities that informs, educates and promotes best practices to professional users of hardware, data and data products.
-
Work Package 9: Transnational access to FixO3 infrastructures
- To support external scientific users by providing coordinated, free-of-charge, transnational access to fixed open-ocean observatories, including:
1) Ocean surface, water column and seafloor observatory installations and systems considered for transnational access under this proposal
2) One shallow water test site able to make practical and fast tests of instruments, systems, procedures and new technologies applicable to fixed open-ocean observatories that will be accessible under TNA -
Work Package 10: Service activities: Access to data products and knowledge
- To provide access to the data products and knowledge derived from most of the observatories which compromise the FixO3 network. -
Work Package 11: Optimisation of ocean observing capability
- To carry out research on the specification for an optimum observational network of FixO3 platforms, integrated and complemented by other platforms. -
Work Package 12: Research and development on critical observatory functions
- To enhance the capability of the FixO3 infrastructures to make very high quality observations
- To develop a new low energy consuming platform design in order to promote more sensors per platform and extension capacities.
Observatories
FixO3
Observatory | Location | Details |
---|---|---|
Antares | Ligurian Sea, NW Mediterranean Sea | Multidisciplinary, permanent marine observatory proving high-bandwidth real-time data transmission from deep-sea for geosciences and marine environmental sciences. Site is part of the MOOSE network providing real-time data transmission through two deep cabled moorings. These moorings are complemented by standalone mooring near the junction box. Physical and biogeochemical parameters recorded by autonomous sensors with regular maintenance. In addition, monthly ship occupation for CTD profiles and seawater collection. Cabled extension of the neutrino telescope is offering connectors for direct link to shore in addition to operational seismometer already in place. |
Biscay AGL | South East Bay of Biscal | Fully equipped ODAS buoy transmitting data in real-time plus monthly hydrographical and biogeochemical sampling of water column from research vessel. Buoy obtains core measurements of meteorological, physical, biogeochemical and ecological parameters with high significance to weather forecasting and climate monitoring. Data immediately provided through IEO web page (hourly). |
CIS | Central Irminger Sea, Subpolar North Atlantic. | Characterized by particular deep winter mixed layer depth. Mixed layer deepening is promoted through the combination of the cyclonic circulation of the Irminger gyre and strong surface buoyancy forcing in winter. Focus of the interdisciplinary research is on the biogeochemical cycling in a potential deep water formation area. The physical background field (temperature, salinity, currents) of the upper 1500m is surveyed with a number of sensors. Moreover, biogeochemical sensors (O2, Chl-a, zooplankton) is measured in mixed layer. |
CVOO | Tropical Eastern North Atlantic | A mooring and a small vessel maintaining the time-series continuity. |
DELOS (Deep-Ocean Environmental Long-term Observatory System) A | Angola, between the Congo and Kwanza rivers. | Environmental monitoring platform locations in the near field - within 50m of a sea floor well. The platform hosts a camera module, oceanographic module and acoustic module, each with multiple instruments, plus a sediment trap module. |
DELOS (Deep-Ocean Environmental Long-term Observatory System) B | Angola, between the Congo and Kwanza rivers. | Environmental monitoring platform in the far field (~16km from sea floor infrastructure). On a flat <1° slope on finely sedimented sea floor within petroleum lease Block 18. The platform hosts a camera module, oceanographic module and acoustic module, each with multiple instruments, plus a sediment trap module. |
DYFAMED | Ligurian Sea - a passage between Eastern and Western Mediterannean Sea. | Multidisciplinary site within MOOSE network. A strong influence of atmospheric deposition influencing productivity and particle export monitored by atmospheric survey (Cap Ferrat) and two permanent sediment traps. Physical parameters recorded from surface to deep waters through monthly visits and permanent deep mooring. Biogeochemical parameters obtained monthly during ship visits. The site is also a way point of gliders and used for cross-validation of bio-parameters (nitrate, oxygen). |
E1-M3A | Eastern Mediterranean, Crete | Multidisciplinary mooring, an area of open sea conditions, characterized as extremely oligotrophic where dense waters with intermediate and deep characteristics are formed. |
E2-M3A | South Adriatic Pit (Eastern Mediterranean Sea). | Two moorings (surface buoy and sub-surface mooring line) and designed to monitor physical and biogeochemical processes in the water column from the surface down to the bottom (approximately 1220m). The surface buoy collects air/sea meteorological and physical measurements in the surface layer (2m depth). The secondary deep mooring instead, is equipped with current meters (RDI-ADCP and Seaguard-RCM), CTD's with dissolved oxygen and optical sensors. New biochemical sensors (CO2 and pH) were deployed during the first year of the FixO3 project to enhance the payload of the site. |
ESTOC | Central Eastern Atlantic | Open ocean site with over 15 years of continuous surface and mid-water meteorological, physical and biogeochemical monitoring. |
FILCHNER RONNE | Filcher sill in the Souther Weddell Sea | Long-term monitoring of Ice Shelf Water (ISW) Overflow, established in 1977 and continuing to deliver the longest existing marine time series from Antarctica. The position for the observatory S2 proved to be a key site for monitoring the ISW overflow produced beneath the huge Filchner Ronne Ice Shelf and is selected to be a part of the global net of monitoring sites under CLIVAR (www.clivar.org) and OceanSITES (www.oceansites.org). Time series of current speed and direction, temperature and salinity exist back to 1977. Continuous observation of dissolved oxygen started in 2009. |
FRAM | Fram Strait | Array of moorings and permanent sampling sites across the Fram Strait. Installed to capture the exchange of Atlantic and Arctic waters, and to study the temporal development of an Arctic Marine ecosystem. enables year-round multidisciplinary long-term observations, partially with near real-time data access. |
LION | Gulf of Lion | Deep-sea mooring aims to observe the winter convection affecting the north-western Mediterranean Sea water circulation and deep-sea ecosystem (physical data). The mooring is deployed near the ODAS meteorological surface buoy (Gulf of Lion) and integrated in the MOOSE network. |
MOMAR | Mid-Atlantic - Hydrothermal vent field Lucky Strike | Multidisciplinary (fauna, fluid chemistry, seismicity and ground deformation); near real time communication through acoustic link, buoy and satellite. EMSO observatory node, in operation since 2010, comprises an oceanographic mooring and nested arrays of seisometers, pressure probes, temperature probes and chemical sensors in vent fluids, as well as a camera and colonization devices for faunal and microfaunal studies. Satellite transmission of a data subset, accessible on an EMSO-related server. Yearly maintenance cruises scheduled until 2015. Upgrades of system planned for 2014 with several new connection nodes accessible to FixO3 collaborations. |
NEMO-SN1 | Catania (Sicily) | Multidisciplinary (geophysics, oceanography, bioacoustics) observatory. Deep-sea real-time multi-parameter observatory is currently being re-deployed after refurbishment and installations of new electronics. |
NOC | North Atlantic | Sediment trap mooring with current sensors in the least productive gyre in the North Atlantic, influence to a degree by dust supply from the Sahara desert. |
OBSEA | Western Mediterranean | The main objective for OBSEA is to be a test bed for the development of oceanographic instrumentation while being a shallow-water observatory providing real time data and database with historical values. |
PAP | North Atlantic | Array of moorings covering the entire water column and benthos with associated repeat ship occupations for process studies and collections not possible autonomously (e.g. benthic megafauna). Longest running multidisciplinary open ocean sustained observatory delivering atmospheric, physical, biogeochemical ocean datasets in near real time. |
PYLOS | Adriatic and Eastern Mediterranean basins. | Multidisciplinary observatory mooring. Very geologically active area, with lots of earthquakes and landslides as well as a potential source of Tsunamis that might affect the Easter Mediterranean Sea. |
SOG | South Atlantic | A sediment trap mooring with current sensors, in the middle of the least productive gyre in the South Atlantic (in contrast to NOG). It is not influenced by dust supply. |
SOR | Mid-Atlantic RIdge, South of Svalbard. | Single location mooring. A component of NOON (Norwegian Ocean Observatory Network) planned as a demo mission in 2012, then as a sustained observatory in 2016. |
Station M | Norwegian Sea | Ocean Weather Station M (OWS M) has been an ocean weather station since 1948. At present there is a mooring and surface buoy measuring hydrography, O2, chlorophyll and carbon parameters. Real-time and delayed-mode capabilities. This site provides the longest existing homogeneous time series from deep ocean. The facility presented here is the mooring situated between 150 and 2000m. |
W1-M3A | Ligurian Sea | A single multidisciplinary observatory mooring with real-time and delayed mode capability. The W1-M3A observing system is composed by a large spar buoy and a sub-surface mooring periodically deployed close to the main buoy depending on specific research needs. The W1-M3A large spar buoy specifically designed for air-sea interaction studies and the collection of meteorological data even in rough sea. Stability is the basic feature of this type of buoy with respect to the other more classical approach based on discus-shaped buoys. The buoy was specifically designed as a stable measuring platform since its total mass, the unity buoyancy at the sea level, and presence of a damping disk allow for negligible sensitivity of sea heave and height. |
The British Oceanographic Data centre store data from PAP, NOG and SOG as of January 2018.
Data Activity or Cruise Information
Data Activity
Start Date (yyyy-mm-dd) | 2015-07-01 |
End Date (yyyy-mm-dd) | 2016-04-25 |
Organization Undertaking Activity | National Oceanography Centre, Southampton |
Country of Organization | United Kingdom |
Originator's Data Activity Identifier | PAP1_072015 |
Platform Category | moored surface buoy |
Moored Instrument Rig PAP1_072015
This rig was deployed as part of the Porcupine Abyssal Plain (PAP) observatory project. 'PAP1_072015' refers to the deployment of mooring number 1 in July 2015 ('072015') located at the PAP Observatory. This was the eleventh deployment of this mooring configuration at the PAP site, under this project.
Data summary
Deployment cruise | RRS Discovery DY032 |
Recovery cruise | RSS Discovery DY050 |
Rig position | 48.01°N 16.3366°W |
Water depth | 4837 m |
Deployed | 1st July 2015 |
Recovered | 25th April 2016 |
Instrumentation
The mooring design is an 'S' tether configuration allowing the mooring to better withstand the extremes of the environment it is in. The main surface buoy is an ODAS (Ocean Data Acquisition System) buoy, and below this buoy are 30 meters of chain with a conducting cable running along side. The chain is there to take the loads that the mooring will experience and the cable is a vehicle for the data. Attached to the bottom of the chain is the instrument frame, and coming out of the bottom of the frame is a cable attached to a subsurface buoy, an acoustic release and then finally a 3 tonne sinker weight. Further details on page 15 of the deployment cruise report.
Instruments on the subsurface frame are listed below:
Instrument | Serial number | Nominal depth |
Sea-Bird SBE-37IMP MicroCAT | SN 13397 | 1m |
Pro-Oceanus CO2-Pro | SN 29-097-45 | 1m |
Satlantic OCR-507 ICSA | SN 226 | 1m |
Satlantic SeaFET pH | SN 257 | 1m |
SensorLab SP101-Sm pH | - | 1m |
Sea-Bird SBE-37IMP-ODO MicroCAT | SN 10535 | 30m |
Sea-Bird SBE-37IMP MicroCAT | SN 6904 | 30m |
WETLabs FLNTUSB Fluorometer | SN 3050 | 30m |
Satlantic ISUS Nitrate | SN 59 | 30m |
Satlantic SeaFET pH | SN 63 | 30m |
Aanderaa 4430H Seaguard | SN 1614 | 30m |
Aanderaa 4330 optode in Seaguard | SN 2001 | 30m |
Turner Cyclops Fluorometer in Seaguard | SN 2103960 | 30m |
Satlantic OCR-507 ICSW irradiance | SN 287 | 30m |
Satlantic OCR-507 R10W radiance | SN 113 | 30m |
Pro-Oceanus Logging CO2-Pro | SN 34-200-45 | 30m |
Pro-Oceanus GTD-Pro | SN 33-152-16 | 30m |
McLane ZPS plankton sampler | - | 30m |
WETLabs CYCL-P Phosphate | SN 164 | 30m |
Related Data Activity activities are detailed in Appendix 1
Cruise
Cruise Name | DY032 |
Departure Date | 2015-06-20 |
Arrival Date | 2015-07-07 |
Principal Scientist(s) | Richard Stephen Lampitt (National Oceanography Centre, Southampton) |
Ship | RRS Discovery |
Complete Cruise Metadata Report is available here
Fixed Station Information
Fixed Station Information
Station Name | Porcupine Abyssal Plain (PAP) |
Category | Offshore location |
Latitude | 49° 0.00' N |
Longitude | 16° 30.00' W |
Water depth below MSL | 4800.0 m |
Porcupine Abyssal Plain (PAP) Observatory
The Porcupine Abyssal Plain (PAP) observatory is a site at which moorings were deployed in the Northeastern Atlantic, as part of the ANIMATE (Atlantic Network of Interdisciplinary Moorings and Time-series for Europe), MERSEA (Marine Environment and Security for the European Area), EuroSITES, Oceans2025, Fix03 and CLASS projects. The PAP site is centred at latitude 49° N and longitude 16.5° W. Moorings have occupied this region since 2002 and are typically deployed for 12 months.
Please note: Near Real Time data is only stored at BODC where delayed mode data were not recovered. All near real time data can be found at the OceanSites GDA and through IFREMER.
Data summary
Mooring deployment | Deployment Cruise | Temperature salinity pressure | ADCP | Chlorophyll | Sediment trap | Current meter | Nitrate | Carbon dioxide | Oxygen | Irradience | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Real time | Delayed mode | Real time | Delayed mode | Real time | Delayed mode | Real time | Delayed mode | Real time | Delayed mode | Real time | Delayed mode | Real time | Delayed mode | ||||
PAP 2002 | D266 | Data | Data | Data | NT | UD | Data | NT | Data | NT | Data | NT | SF | NT | ND | NT | ND |
PAP 2003 | P0300_1 | CF | Data | Data | NT | Data | Data | NT | Data | NT | Data | NT | Data | NT | ND | NT | ND |
PAP 2003 | P0306 | Data | Data | Data | NT | Data | Data | - | Data | NT | Data | NT | Data | NT | ND | NT | ND |
PAP 2004 | CD158 | Data | Data | Data | NT | Data | Data | NT | Data | NT | UD | NT | Data | NT | ND | NT | ND |
PAP 2005 | D296 | Data | ND | ND | NT | ND | Data | NT | Data | NT | Pending | NT | Pending | NT | ND | NT | ND |
PAP 2006 | D306 | ND | ND | ND | ND | ND | Data | NT | Data | ND | ND | ND | ND | NT | Pending | NT | ND |
PAP 2007 | CE0716 | Data | Data | Data | Data | Data | Data | NT | Pending | SF | SF | NT | Data | NT | ND | NT | ND |
PAP 2009 | D341 | Data | Data | ND | Data | Data | Pending | NT | Pending | Data | Data | SF | SF | NT | Data | NT | Pending |
PAP 2010 | CE10005 | Data | Data | Data | Data | Pending | Data | Data | Pending | NT | Pending | NT | Data | Data | Pending | Data | ND |
PAP 2011 | JC062 | Data | Data | Pending | Data | Data | Data | ND | Data | ND | ND | Data | Data | Data | Data | Data | ND |
PAP 2012 | JC071 | Data | Data | Not deployed | Data | Pending | Data | - | Pending | Data | SF | Data | Data | Data | Data | Data | ND |
PAP 2013 | JC085 | Data | Data | Not deployed | Data | Pending | Data | Data | Pending | - | Data | Data | Data | Data | Data | Data | ND |
PAP 2013 | JC087 | Data | Data | Not deployed | Data | Data | ND (see JC085) | Data | ND | ND | Data | Data | ND | Data | Data | Data | ND |
PAP 2014 | M108 | Data | Data | Not deployed | Data | ND | Data | Data | Pending | Data | Data | Data | Data | Data | Data | -Data | Pending |
PAP 2015 | DY032 | Data | Data | Not deployed | Data | Data | Data | Data | ND | - | Data | Data | Data | Data | Data | Data | Data |
PAP 2016 | DY050 | Data | Data | Not deployed | Data | Data | Data | Data | Data | Data | Data | Data | SF | Data | Data | Data | SF |
PAP 2017 | DY077 | Data | Data | Not deployed | Data | Data | Data | Data | Data | Data | Data | Data | Data | Data | Data | Data | ND |
PAP 2018 | JC165 | Data | Data | Not deployed | Data | Data | Data | Data | Data | Data | Data | Data | Data | Data | Data | Data | Data |
PAP 2019 | DY103 | Data | Data | Not deployed | Data | ND | Data | Data | Data | Data | Near Real Time only | Data | Data | Data | ND | Data | ND |
PAP 2020 | DY116 | Data | Pending | Not deployed | Data | Data | Pending | Data | Data | ND | ND | Data | Data | Data | Data | Data | Data |
PAP 2021 | DY130 | Data | Data | Not deployed | Data | Not deployed | Pending | Data | Data | Data | Data | Data | Data | Data | Pending | Data | Data |
PAP 2022 | JC231 | Data | NYR | Not deployed | Data | NYR | NYR | Data | NYR | Data | NYR | Data | NYR | Data | NYR | Data | NYR |
PAP 2023 | JC247 | - | NYR | Not deployed | - | NYR | NYR | - | NYR | - | NYR | - | NYR | - | NYR | - | Data |
Status Indicators
Indicator | Description |
---|---|
Data | Data received from mooring |
Pending | Data not yet received |
SF | Sensor failed |
ND | No data |
NYR | Not yet recovered |
CF | Communications failure |
UD | Unusable data |
NT | Not telemetered |
Related Fixed Station activities are detailed in Appendix 2
BODC Quality Control Flags
The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:
Flag | Description |
---|---|
Blank | Unqualified |
< | Below detection limit |
> | In excess of quoted value |
A | Taxonomic flag for affinis (aff.) |
B | Beginning of CTD Down/Up Cast |
C | Taxonomic flag for confer (cf.) |
D | Thermometric depth |
E | End of CTD Down/Up Cast |
G | Non-taxonomic biological characteristic uncertainty |
H | Extrapolated value |
I | Taxonomic flag for single species (sp.) |
K | Improbable value - unknown quality control source |
L | Improbable value - originator's quality control |
M | Improbable value - BODC quality control |
N | Null value |
O | Improbable value - user quality control |
P | Trace/calm |
Q | Indeterminate |
R | Replacement value |
S | Estimated value |
T | Interpolated value |
U | Uncalibrated |
W | Control value |
X | Excessive difference |
SeaDataNet Quality Control Flags
The following single character qualifying flags may be associated with one or more individual parameters with a data cycle:
Flag | Description |
---|---|
0 | no quality control |
1 | good value |
2 | probably good value |
3 | probably bad value |
4 | bad value |
5 | changed value |
6 | value below detection |
7 | value in excess |
8 | interpolated value |
9 | missing value |
A | value phenomenon uncertain |
B | nominal value |
Q | value below limit of quantification |
Appendix 1: PAP1_072015
Related series for this Data Activity are presented in the table below. Further information can be found by following the appropriate links.
If you are interested in these series, please be aware we offer a multiple file download service. Should your credentials be insufficient for automatic download, the service also offers a referral to our Enquiries Officer who may be able to negotiate access.
Series Identifier | Data Category | Start date/time | Start position | Cruise |
---|---|---|---|---|
2171870 | Hydrography time series at depth | 2015-07-01 11:30:01 | 49.01 N, 16.33666 W | RRS Discovery DY032 |
2171882 | Hydrography time series at depth | 2015-07-01 11:30:50 | 49.01 N, 16.33666 W | RRS Discovery DY032 |
1851006 | Water column chemistry | 2015-07-01 11:59:38 | 49.03056 N, 16.37222 W | RRS Discovery DY032 |
1850992 | Water column chemistry | 2015-07-01 23:58:05 | 49.03056 N, 16.37222 W | RRS Discovery DY032 |
Appendix 2: Porcupine Abyssal Plain (PAP)
Related series for this Fixed Station are presented in the table below. Further information can be found by following the appropriate links.
If you are interested in these series, please be aware we offer a multiple file download service. Should your credentials be insufficient for automatic download, the service also offers a referral to our Enquiries Officer who may be able to negotiate access.
Series Identifier | Data Category | Start date/time | Start position | Cruise |
---|---|---|---|---|
1225957 | Hydrography time series at depth | 2002-10-06 20:00:00 | 48.9833 N, 16.468 W | RRS Discovery D266 |
1225970 | Hydrography time series at depth | 2002-10-06 20:00:00 | 48.9833 N, 16.468 W | RRS Discovery D266 |
1225982 | Hydrography time series at depth | 2002-10-06 20:00:00 | 48.9833 N, 16.468 W | RRS Discovery D266 |
1225969 | Hydrography time series at depth | 2002-10-07 02:00:00 | 48.9833 N, 16.468 W | RRS Discovery D266 |
1225994 | Hydrography time series at depth | 2002-10-07 02:00:00 | 48.9833 N, 16.468 W | RRS Discovery D266 |
1226008 | Hydrography time series at depth | 2002-10-07 02:00:00 | 48.9833 N, 16.468 W | RRS Discovery D266 |
1226021 | Hydrography time series at depth | 2002-10-07 02:00:00 | 48.9833 N, 16.468 W | RRS Discovery D266 |
1226033 | Hydrography time series at depth | 2002-10-07 02:00:00 | 48.9833 N, 16.468 W | RRS Discovery D266 |
1226045 | Hydrography time series at depth | 2002-10-07 02:00:00 | 48.9833 N, 16.468 W | RRS Discovery D266 |
1225945 | Hydrography time series at depth | 2002-10-09 00:00:00 | 48.9833 N, 16.424 W | RRS Discovery D266 |
895626 | Water column chemistry | 2002-10-09 10:28:20 | 48.9833 N, 16.424 W | RRS Discovery D266 |
876493 | Fluorescence or pigments | 2003-07-12 14:22:29 | 48.9975 N, 16.4492 W | FS Poseidon PO300_1 |
1226057 | Hydrography time series at depth | 2003-07-12 14:30:00 | 48.9975 N, 16.4492 W | FS Poseidon PO300_1 |
1226069 | Hydrography time series at depth | 2003-07-12 14:30:00 | 48.9975 N, 16.4492 W | FS Poseidon PO300_1 |
1226070 | Hydrography time series at depth | 2003-07-12 14:30:00 | 48.9975 N, 16.4492 W | FS Poseidon PO300_1 |
1226082 | Hydrography time series at depth | 2003-07-12 14:30:00 | 48.9975 N, 16.4492 W | FS Poseidon PO300_1 |
1226094 | Hydrography time series at depth | 2003-07-12 14:30:00 | 48.9975 N, 16.4492 W | FS Poseidon PO300_1 |
1226101 | Hydrography time series at depth | 2003-07-12 14:30:00 | 48.9975 N, 16.4492 W | FS Poseidon PO300_1 |
1226113 | Hydrography time series at depth | 2003-07-12 14:30:00 | 48.9975 N, 16.4492 W | FS Poseidon PO300_1 |
774750 | Currents -subsurface Eulerian | 2003-07-12 19:00:00 | 49.0 N, 16.5 W | FS Poseidon PO300_1 |
774762 | Currents -subsurface Eulerian | 2003-07-12 19:01:00 | 49.0 N, 16.5 W | FS Poseidon PO300_1 |
876407 | Water column chemistry | 2003-07-13 00:00:00 | 48.9975 N, 16.44917 W | FS Poseidon PO300_1 |
895638 | Water column chemistry | 2003-07-13 09:35:19 | 49.0417 N, 16.5267 W | FS Poseidon PO300_1 |
1226137 | Hydrography time series at depth | 2003-11-17 16:30:00 | 49.0755 N, 16.4963 W | FS Poseidon PO306 |
1226149 | Hydrography time series at depth | 2003-11-17 16:30:00 | 49.0755 N, 16.4963 W | FS Poseidon PO306 |
1226150 | Hydrography time series at depth | 2003-11-17 16:30:00 | 49.0755 N, 16.4963 W | FS Poseidon PO306 |
1226162 | Hydrography time series at depth | 2003-11-17 16:30:00 | 49.0755 N, 16.4963 W | FS Poseidon PO306 |
1226174 | Hydrography time series at depth | 2003-11-17 16:30:00 | 49.0755 N, 16.4963 W | FS Poseidon PO306 |
1226186 | Hydrography time series at depth | 2003-11-17 16:30:00 | 49.0755 N, 16.4963 W | FS Poseidon PO306 |
1226198 | Hydrography time series at depth | 2003-11-17 16:30:00 | 49.0755 N, 16.4963 W | FS Poseidon PO306 |
1226205 | Hydrography time series at depth | 2003-11-17 16:30:00 | 49.0755 N, 16.4963 W | FS Poseidon PO306 |
1226217 | Hydrography time series at depth | 2003-11-17 16:30:00 | 49.0755 N, 16.4963 W | FS Poseidon PO306 |
1226229 | Hydrography time series at depth | 2003-11-17 16:30:00 | 49.0755 N, 16.4963 W | FS Poseidon PO306 |
1226125 | Hydrography time series at depth | 2003-11-18 16:15:00 | 49.0417 N, 16.5267 W | FS Poseidon PO306 |
876419 | Water column chemistry | 2003-11-18 17:00:00 | 49.0417 N, 16.5267 W | FS Poseidon PO306 |
876500 | Fluorescence or pigments | 2003-11-18 17:00:25 | 49.0417 N, 16.5267 W | FS Poseidon PO306 |
895651 | Water column chemistry | 2003-11-19 09:14:19 | 49.0417 N, 16.5267 W | FS Poseidon PO306 |
1226242 | Hydrography time series at depth | 2004-06-22 22:00:00 | 49.1192 N, 16.4935 W | RRS Charles Darwin CD158 |
1226254 | Hydrography time series at depth | 2004-06-22 22:00:00 | 49.1192 N, 16.4935 W | RRS Charles Darwin CD158 |
1226266 | Hydrography time series at depth | 2004-06-22 22:00:00 | 49.1192 N, 16.4935 W | RRS Charles Darwin CD158 |
1226278 | Hydrography time series at depth | 2004-06-22 22:00:00 | 49.1192 N, 16.4935 W | RRS Charles Darwin CD158 |
1226291 | Hydrography time series at depth | 2004-06-22 22:00:00 | 49.1192 N, 16.4935 W | RRS Charles Darwin CD158 |
1226309 | Hydrography time series at depth | 2004-06-22 22:00:00 | 49.1192 N, 16.4935 W | RRS Charles Darwin CD158 |
1226310 | Hydrography time series at depth | 2004-06-22 22:00:00 | 49.1192 N, 16.4935 W | RRS Charles Darwin CD158 |
1226322 | Hydrography time series at depth | 2004-06-22 22:00:00 | 49.1192 N, 16.4935 W | RRS Charles Darwin CD158 |
1226334 | Hydrography time series at depth | 2004-06-22 22:00:00 | 49.1192 N, 16.4935 W | RRS Charles Darwin CD158 |
1226346 | Hydrography time series at depth | 2004-06-22 22:00:00 | 49.1192 N, 16.4935 W | RRS Charles Darwin CD158 |
1226230 | Hydrography time series at depth | 2004-06-23 20:00:00 | 49.0432 N, 16.529 W | RRS Charles Darwin CD158 |
876420 | Water column chemistry | 2004-06-23 20:00:00 | 49.0497 N, 16.5169 W | RRS Charles Darwin CD158 |
876512 | Fluorescence or pigments | 2004-06-23 22:44:22 | 49.04317 N, 16.529 W | RRS Charles Darwin CD158 |
945170 | Currents -subsurface Eulerian | 2007-06-19 22:47:51 | 48.915 N, 16.5458 W | Celtic Explorer CE0716 |
888088 | CTD or STD cast | 2007-06-21 10:38:36 | 48.999 N, 16.502 W | Celtic Explorer CE0716 |
888107 | CTD or STD cast | 2007-06-21 13:51:30 | 48.999 N, 16.502 W | Celtic Explorer CE0716 |
1868602 | Water sample data | 2007-06-21 14:07:00 | 48.999 N, 16.502 W | Celtic Explorer CE0716 |
888119 | CTD or STD cast | 2007-06-21 14:51:49 | 48.999 N, 16.501 W | Celtic Explorer CE0716 |
888120 | CTD or STD cast | 2007-06-21 18:24:18 | 48.999 N, 16.502 W | Celtic Explorer CE0716 |
888132 | CTD or STD cast | 2007-06-21 19:44:47 | 48.999 N, 16.501 W | Celtic Explorer CE0716 |
888144 | CTD or STD cast | 2007-06-21 20:03:48 | 48.999 N, 16.502 W | Celtic Explorer CE0716 |
888156 | CTD or STD cast | 2007-06-22 12:27:41 | 49.002 N, 16.4545 W | Celtic Explorer CE0716 |
1083405 | Fluorescence or pigments | 2007-06-22 16:02:45 | 49.0 N, 16.419 W | Celtic Explorer CE0716 |
1225816 | Hydrography time series at depth | 2007-06-22 18:00:00 | 49.0163 N, 16.402 W | Celtic Explorer CE0716 |
1225828 | Hydrography time series at depth | 2007-06-22 18:00:00 | 49.0163 N, 16.402 W | Celtic Explorer CE0716 |
1225841 | Hydrography time series at depth | 2007-06-22 18:00:00 | 49.0163 N, 16.402 W | Celtic Explorer CE0716 |
1225853 | Hydrography time series at depth | 2007-06-22 18:00:00 | 49.0163 N, 16.402 W | Celtic Explorer CE0716 |
1225865 | Hydrography time series at depth | 2007-06-22 18:00:00 | 49.0163 N, 16.402 W | Celtic Explorer CE0716 |
1225877 | Hydrography time series at depth | 2007-06-22 18:00:00 | 49.0163 N, 16.402 W | Celtic Explorer CE0716 |
1225889 | Hydrography time series at depth | 2007-06-22 18:00:00 | 49.0163 N, 16.402 W | Celtic Explorer CE0716 |
1225890 | Hydrography time series at depth | 2007-06-22 18:00:00 | 49.0163 N, 16.402 W | Celtic Explorer CE0716 |
1225908 | Hydrography time series at depth | 2007-06-22 18:00:00 | 49.0163 N, 16.402 W | Celtic Explorer CE0716 |
1225921 | Hydrography time series at depth | 2007-06-22 18:00:00 | 49.0163 N, 16.402 W | Celtic Explorer CE0716 |
1225933 | Hydrography time series at depth | 2007-06-22 18:00:00 | 49.0163 N, 16.402 W | Celtic Explorer CE0716 |
888168 | CTD or STD cast | 2007-06-22 20:09:04 | 49.084 N, 16.401 W | Celtic Explorer CE0716 |
888181 | CTD or STD cast | 2007-06-23 01:04:54 | 48.9165 N, 16.3 W | Celtic Explorer CE0716 |
888193 | CTD or STD cast | 2007-06-23 03:44:40 | 48.9165 N, 16.5002 W | Celtic Explorer CE0716 |
1225804 | Hydrography time series at depth | 2007-06-23 14:00:00 | 49.0163 N, 16.402 W | Celtic Explorer CE0716 |
888200 | CTD or STD cast | 2007-06-23 15:27:51 | 48.9767 N, 16.5116 W | Celtic Explorer CE0716 |
1058137 | Water column chemistry | 2007-06-28 15:00:00 | 49.0 N, 16.419 W | Celtic Explorer CE0716 |
1842200 | Fluorescence or pigments | 2009-05-23 16:00:00 | 49.07167 N, 16.38167 W | RRS James Cook JC034T |
1851461 | Hydrography time series at depth | 2009-05-23 16:00:00 | 49.07167 N, 16.38167 W | RRS James Cook JC034T |
1851473 | Hydrography time series at depth | 2009-05-23 16:00:00 | 49.07167 N, 16.38167 W | RRS James Cook JC034T |
1851485 | Hydrography time series at depth | 2009-05-23 16:00:00 | 49.07167 N, 16.38167 W | RRS James Cook JC034T |
1919019 | Currents -subsurface Eulerian | 2009-05-23 16:15:00 | 49.07167 N, 16.38167 W | RRS James Cook JC034T |
1620712 | Water column chemistry | 2009-05-23 16:15:00 | 49.07167 N, 16.38167 W | RRS James Cook JC034T |
1640682 | Water column chemistry | 2009-05-23 16:15:00 | 49.07167 N, 16.38167 W | RRS James Cook JC034T |
1620700 | Water column chemistry | 2009-05-23 17:00:39 | 49.07167 N, 16.38167 W | RRS James Cook JC034T |
1640670 | Water column chemistry | 2009-05-24 04:00:00 | 49.07167 N, 16.38167 W | RRS James Cook JC034T |
1170739 | Currents -subsurface Eulerian | 2009-07-09 18:41:20 | 55.10983 N, 5.302 W | RRS Discovery D341 |
1170740 | Currents -subsurface Eulerian | 2009-07-10 09:50:48 | 52.32233 N, 6.02167 W | RRS Discovery D341 |
1170752 | Currents -subsurface Eulerian | 2009-07-11 10:02:17 | 50.63183 N, 11.19833 W | RRS Discovery D341 |
1170764 | Currents -subsurface Eulerian | 2009-07-12 09:50:56 | 49.919 N, 13.46283 W | RRS Discovery D341 |
1170776 | Currents -subsurface Eulerian | 2009-07-13 06:54:49 | 49.04683 N, 16.48233 W | RRS Discovery D341 |
1170788 | Currents -subsurface Eulerian | 2009-07-14 04:55:19 | 48.94567 N, 16.882 W | RRS Discovery D341 |
1170807 | Currents -subsurface Eulerian | 2009-07-15 04:57:38 | 49.023 N, 16.562 W | RRS Discovery D341 |
1170819 | Currents -subsurface Eulerian | 2009-07-16 04:53:11 | 49.1025 N, 16.41267 W | RRS Discovery D341 |
1170820 | Currents -subsurface Eulerian | 2009-07-17 04:57:28 | 48.8335 N, 16.598 W | RRS Discovery D341 |
1170832 | Currents -subsurface Eulerian | 2009-07-18 04:55:00 | 48.82283 N, 16.50567 W | RRS Discovery D341 |
1170844 | Currents -subsurface Eulerian | 2009-07-19 04:50:51 | 48.99767 N, 16.51133 W | RRS Discovery D341 |
1170856 | Currents -subsurface Eulerian | 2009-07-20 04:57:21 | 48.81283 N, 16.72583 W | RRS Discovery D341 |
1170868 | Currents -subsurface Eulerian | 2009-07-20 17:08:18 | 49.07317 N, 16.389 W | RRS Discovery D341 |
1170881 | Currents -subsurface Eulerian | 2009-07-21 04:53:26 | 48.725 N, 17.184 W | RRS Discovery D341 |
1170893 | Currents -subsurface Eulerian | 2009-07-22 04:53:02 | 49.191 N, 16.89683 W | RRS Discovery D341 |
1170900 | Currents -subsurface Eulerian | 2009-07-23 04:55:55 | 49.07417 N, 16.63433 W | RRS Discovery D341 |
1170912 | Currents -subsurface Eulerian | 2009-07-24 04:58:31 | 48.91383 N, 16.35767 W | RRS Discovery D341 |
1170924 | Currents -subsurface Eulerian | 2009-07-25 04:48:52 | 49.463 N, 16.06033 W | RRS Discovery D341 |
1170936 | Currents -subsurface Eulerian | 2009-07-26 04:57:07 | 49.184 N, 16.022 W | RRS Discovery D341 |
1170948 | Currents -subsurface Eulerian | 2009-07-27 07:57:16 | 49.13833 N, 16.284 W | RRS Discovery D341 |
1170961 | Currents -subsurface Eulerian | 2009-07-28 04:51:18 | 48.814 N, 16.46 W | RRS Discovery D341 |
1170973 | Currents -subsurface Eulerian | 2009-07-29 04:46:43 | 48.97817 N, 16.91267 W | RRS Discovery D341 |
1170985 | Currents -subsurface Eulerian | 2009-07-30 04:59:27 | 48.83417 N, 16.485 W | RRS Discovery D341 |
1170997 | Currents -subsurface Eulerian | 2009-07-31 04:58:40 | 48.60483 N, 16.601 W | RRS Discovery D341 |
1171000 | Currents -subsurface Eulerian | 2009-08-01 04:54:17 | 48.7355 N, 16.54017 W | RRS Discovery D341 |
1171012 | Currents -subsurface Eulerian | 2009-08-02 04:44:14 | 48.64567 N, 16.5675 W | RRS Discovery D341 |
1171024 | Currents -subsurface Eulerian | 2009-08-03 04:52:52 | 48.99783 N, 16.4255 W | RRS Discovery D341 |
1171036 | Currents -subsurface Eulerian | 2009-08-04 04:51:20 | 48.82417 N, 16.91783 W | RRS Discovery D341 |
1171048 | Currents -subsurface Eulerian | 2009-08-05 04:52:18 | 48.90333 N, 16.87867 W | RRS Discovery D341 |
1171061 | Currents -subsurface Eulerian | 2009-08-06 04:48:40 | 48.907 N, 16.08783 W | RRS Discovery D341 |
1171073 | Currents -subsurface Eulerian | 2009-08-07 04:49:16 | 49.00783 N, 16.48933 W | RRS Discovery D341 |
1171085 | Currents -subsurface Eulerian | 2009-08-08 04:52:39 | 48.79867 N, 16.98883 W | RRS Discovery D341 |
1171097 | Currents -subsurface Eulerian | 2009-08-09 04:51:28 | 48.9835 N, 16.50517 W | RRS Discovery D341 |
1171104 | Currents -subsurface Eulerian | 2009-08-10 04:54:18 | 49.26467 N, 15.59733 W | RRS Discovery D341 |
1171116 | Currents -subsurface Eulerian | 2009-08-10 22:47:24 | 50.53633 N, 11.35417 W | RRS Discovery D341 |
1839394 | Water column chemistry | 2010-06-03 12:00:00 | 48.993 N, 16.369 W | RRS James Clark Ross JR20100526 (JR221) |
1839401 | Water column chemistry | 2010-09-21 12:00:00 | 48.993 N, 16.369 W | Celtic Explorer CE10005 |
1839413 | Water column chemistry | 2011-08-02 00:00:00 | 48.0135 N, 16.3698 W | RRS James Cook JC062 |
1177289 | Bathymetry | 2012-05-01 21:59:00 | 48.6223 N, 16.3579 W | RRS James Cook JC071 |
1839425 | Water column chemistry | 2012-05-06 00:00:00 | 48.0049 N, 16.3763 W | RRS James Cook JC071 |
1177290 | Bathymetry | 2012-05-07 20:59:00 | 49.1075 N, 17.0159 W | RRS James Cook JC071 |
1759923 | CTD or STD cast | 2013-04-19 06:38:00 | 48.67517 N, 16.3365 W | RRS James Cook JC085 |
2105768 | Water sample data | 2013-04-19 08:49:30 | 48.67523 N, 16.33658 W | RRS James Cook JC085 |
2107566 | Water sample data | 2013-04-19 08:49:30 | 48.67523 N, 16.33658 W | RRS James Cook JC085 |
2111830 | Water sample data | 2013-04-19 08:49:30 | 48.67523 N, 16.33658 W | RRS James Cook JC085 |
1928139 | Water sample data | 2013-04-19 08:50:00 | 48.67523 N, 16.33658 W | RRS James Cook JC085 |
1759935 | CTD or STD cast | 2013-04-21 21:10:00 | 48.991 N, 16.48083 W | RRS James Cook JC085 |
2105781 | Water sample data | 2013-04-21 22:17:30 | 48.991 N, 16.48083 W | RRS James Cook JC085 |
2107578 | Water sample data | 2013-04-21 22:17:30 | 48.991 N, 16.48083 W | RRS James Cook JC085 |
2111842 | Water sample data | 2013-04-21 22:17:30 | 48.991 N, 16.48083 W | RRS James Cook JC085 |
1928140 | Water sample data | 2013-04-21 22:18:00 | 48.991 N, 16.48083 W | RRS James Cook JC085 |
1759947 | CTD or STD cast | 2013-04-23 13:51:00 | 48.61683 N, 16.2995 W | RRS James Cook JC085 |
1928152 | Water sample data | 2013-04-23 15:13:00 | 48.61797 N, 16.29808 W | RRS James Cook JC085 |
2105793 | Water sample data | 2013-04-23 15:13:00 | 48.61797 N, 16.29808 W | RRS James Cook JC085 |
2107591 | Water sample data | 2013-04-23 15:13:00 | 48.61797 N, 16.29808 W | RRS James Cook JC085 |
2111854 | Water sample data | 2013-04-23 15:13:00 | 48.61797 N, 16.29808 W | RRS James Cook JC085 |
2161955 | Hydrography time series at depth | 2013-04-24 22:15:01 | 48.98167 N, 16.27833 W | RRS James Cook JC085 |
2023006 | Hydrography time series at depth | 2013-04-24 22:30:01 | 48.98167 N, 16.27833 W | RRS James Cook JC085 |
2022992 | Hydrography time series at depth | 2013-04-24 22:30:29 | 48.98167 N, 16.27833 W | RRS James Cook JC085 |
1759959 | CTD or STD cast | 2013-04-25 17:29:04 | 48.58717 N, 16.333 W | RRS James Cook JC085 |
1759960 | CTD or STD cast | 2013-04-25 18:59:05 | 48.587 N, 16.34333 W | RRS James Cook JC085 |
1759972 | CTD or STD cast | 2013-04-25 19:49:03 | 48.58683 N, 16.35167 W | RRS James Cook JC085 |
1928164 | Water sample data | 2013-04-25 20:40:00 | 48.58575 N, 16.36107 W | RRS James Cook JC085 |
2107609 | Water sample data | 2013-04-25 20:40:02 | 48.58575 N, 16.36107 W | RRS James Cook JC085 |
1759984 | CTD or STD cast | 2013-04-25 22:37:01 | 48.56283 N, 16.44867 W | RRS James Cook JC085 |
1759996 | CTD or STD cast | 2013-04-25 23:23:00 | 48.56267 N, 16.45617 W | RRS James Cook JC085 |
1760008 | CTD or STD cast | 2013-04-26 00:16:02 | 48.562 N, 16.4655 W | RRS James Cook JC085 |
1928176 | Water sample data | 2013-04-26 01:05:00 | 48.55927 N, 16.47843 W | RRS James Cook JC085 |
2107610 | Water sample data | 2013-04-26 01:05:01 | 48.55927 N, 16.47843 W | RRS James Cook JC085 |
1836556 | CTD or STD cast | 2013-04-26 01:05:45 | 48.96667 N, 16.36667 W | RRS James Cook JC085 |
2113443 | Water sample data | 2013-06-03 08:01:17 | 48.48739 N, 17.1457 W | RRS James Cook JC087 |
1880601 | Water sample data | 2013-06-03 12:31:00 | 48.69983 N, 16.03367 W | RRS James Cook JC087 |
1927702 | Water sample data | 2013-06-03 12:31:00 | 48.69983 N, 16.03367 W | RRS James Cook JC087 |
2107622 | Water sample data | 2013-06-03 12:31:00 | 48.69983 N, 16.03367 W | RRS James Cook JC087 |
2111866 | Water sample data | 2013-06-03 12:31:00 | 48.69983 N, 16.03367 W | RRS James Cook JC087 |
1880625 | Water sample data | 2013-06-03 20:38:00 | 48.64867 N, 16.14267 W | RRS James Cook JC087 |
1927726 | Water sample data | 2013-06-03 20:38:00 | 48.64867 N, 16.14267 W | RRS James Cook JC087 |
2107646 | Water sample data | 2013-06-03 20:38:00 | 48.64867 N, 16.14267 W | RRS James Cook JC087 |
1880717 | Water sample data | 2013-06-05 04:10:00 | 48.64867 N, 16.143 W | RRS James Cook JC087 |
1927831 | Water sample data | 2013-06-05 04:10:00 | 48.64867 N, 16.143 W | RRS James Cook JC087 |
2107751 | Water sample data | 2013-06-05 04:10:00 | 48.64867 N, 16.143 W | RRS James Cook JC087 |
1880729 | Water sample data | 2013-06-05 07:58:00 | 48.65017 N, 16.13883 W | RRS James Cook JC087 |
1927843 | Water sample data | 2013-06-05 07:58:00 | 48.65017 N, 16.13883 W | RRS James Cook JC087 |
2107763 | Water sample data | 2013-06-05 07:58:00 | 48.65017 N, 16.13883 W | RRS James Cook JC087 |
1880730 | Water sample data | 2013-06-05 10:23:00 | 48.64867 N, 16.143 W | RRS James Cook JC087 |
1927855 | Water sample data | 2013-06-05 10:23:00 | 48.64867 N, 16.143 W | RRS James Cook JC087 |
2107775 | Water sample data | 2013-06-05 10:23:00 | 48.64867 N, 16.143 W | RRS James Cook JC087 |
1880742 | Water sample data | 2013-06-05 13:24:00 | 48.64862 N, 16.14292 W | RRS James Cook JC087 |
2107787 | Water sample data | 2013-06-05 13:24:00 | 48.64862 N, 16.14292 W | RRS James Cook JC087 |
1880754 | Water sample data | 2013-06-06 03:58:00 | 48.64862 N, 16.1429 W | RRS James Cook JC087 |
1927867 | Water sample data | 2013-06-06 03:58:00 | 48.64862 N, 16.1429 W | RRS James Cook JC087 |
2107799 | Water sample data | 2013-06-06 03:58:00 | 48.64862 N, 16.1429 W | RRS James Cook JC087 |
1880766 | Water sample data | 2013-06-06 08:23:00 | 48.64867 N, 16.14267 W | RRS James Cook JC087 |
2107806 | Water sample data | 2013-06-06 08:23:00 | 48.64867 N, 16.14267 W | RRS James Cook JC087 |
1880778 | Water sample data | 2013-06-06 19:45:00 | 48.6485 N, 16.14267 W | RRS James Cook JC087 |
1927879 | Water sample data | 2013-06-06 19:45:00 | 48.6485 N, 16.14267 W | RRS James Cook JC087 |
2107818 | Water sample data | 2013-06-06 19:45:00 | 48.6485 N, 16.14267 W | RRS James Cook JC087 |
1880613 | Water sample data | 2013-06-07 08:36:00 | 48.6485 N, 16.14283 W | RRS James Cook JC087 |
1927714 | Water sample data | 2013-06-07 08:36:00 | 48.6485 N, 16.14283 W | RRS James Cook JC087 |
2107634 | Water sample data | 2013-06-07 08:36:00 | 48.6485 N, 16.14283 W | RRS James Cook JC087 |
1880791 | Water sample data | 2013-06-08 03:42:00 | 48.64865 N, 16.1434 W | RRS James Cook JC087 |
1927880 | Water sample data | 2013-06-08 03:42:00 | 48.64865 N, 16.1434 W | RRS James Cook JC087 |
2107831 | Water sample data | 2013-06-08 03:42:00 | 48.64865 N, 16.1434 W | RRS James Cook JC087 |
1880809 | Water sample data | 2013-06-08 10:26:00 | 48.65067 N, 16.48833 W | RRS James Cook JC087 |
1927892 | Water sample data | 2013-06-08 10:26:00 | 48.65067 N, 16.48833 W | RRS James Cook JC087 |
2107843 | Water sample data | 2013-06-08 10:26:00 | 48.65067 N, 16.48833 W | RRS James Cook JC087 |
1880810 | Water sample data | 2013-06-09 07:18:00 | 48.6485 N, 16.14283 W | RRS James Cook JC087 |
1927911 | Water sample data | 2013-06-09 07:18:00 | 48.6485 N, 16.14283 W | RRS James Cook JC087 |
2107855 | Water sample data | 2013-06-09 07:18:00 | 48.6485 N, 16.14283 W | RRS James Cook JC087 |
1880822 | Water sample data | 2013-06-09 15:07:00 | 48.64847 N, 16.14132 W | RRS James Cook JC087 |
1927923 | Water sample data | 2013-06-09 15:07:00 | 48.64847 N, 16.14132 W | RRS James Cook JC087 |
2107867 | Water sample data | 2013-06-09 15:07:00 | 48.64847 N, 16.14132 W | RRS James Cook JC087 |
1880834 | Water sample data | 2013-06-09 19:08:00 | 48.64 N, 16.143 W | RRS James Cook JC087 |
1927935 | Water sample data | 2013-06-09 19:08:00 | 48.64 N, 16.143 W | RRS James Cook JC087 |
2107879 | Water sample data | 2013-06-09 19:08:00 | 48.64 N, 16.143 W | RRS James Cook JC087 |
1880637 | Water sample data | 2013-06-10 03:46:00 | 48.64867 N, 16.14283 W | RRS James Cook JC087 |
1927738 | Water sample data | 2013-06-10 03:46:00 | 48.64867 N, 16.14283 W | RRS James Cook JC087 |
2107658 | Water sample data | 2013-06-10 03:46:00 | 48.64867 N, 16.14283 W | RRS James Cook JC087 |
1880649 | Water sample data | 2013-06-10 08:35:00 | 48.6485 N, 16.14283 W | RRS James Cook JC087 |
1927751 | Water sample data | 2013-06-10 08:35:00 | 48.6485 N, 16.14283 W | RRS James Cook JC087 |
2107671 | Water sample data | 2013-06-10 08:35:00 | 48.6485 N, 16.14283 W | RRS James Cook JC087 |
1880650 | Water sample data | 2013-06-11 08:53:00 | 48.64917 N, 16.14317 W | RRS James Cook JC087 |
1927763 | Water sample data | 2013-06-11 08:53:00 | 48.64917 N, 16.14317 W | RRS James Cook JC087 |
2107683 | Water sample data | 2013-06-11 08:53:00 | 48.64917 N, 16.14317 W | RRS James Cook JC087 |
1880662 | Water sample data | 2013-06-13 04:43:00 | 48.6485 N, 16.14283 W | RRS James Cook JC087 |
1927775 | Water sample data | 2013-06-13 04:43:00 | 48.6485 N, 16.14283 W | RRS James Cook JC087 |
2107695 | Water sample data | 2013-06-13 04:43:00 | 48.6485 N, 16.14283 W | RRS James Cook JC087 |
1880674 | Water sample data | 2013-06-13 08:38:00 | 48.64867 N, 16.14283 W | RRS James Cook JC087 |
1927787 | Water sample data | 2013-06-13 08:38:00 | 48.64867 N, 16.14283 W | RRS James Cook JC087 |
2107702 | Water sample data | 2013-06-13 08:38:00 | 48.64867 N, 16.14283 W | RRS James Cook JC087 |
1880686 | Water sample data | 2013-06-14 04:16:00 | 48.6485 N, 16.14283 W | RRS James Cook JC087 |
1927799 | Water sample data | 2013-06-14 04:16:00 | 48.6485 N, 16.14283 W | RRS James Cook JC087 |
2107714 | Water sample data | 2013-06-14 04:16:00 | 48.6485 N, 16.14283 W | RRS James Cook JC087 |
1880698 | Water sample data | 2013-06-14 08:41:00 | 48.6485 N, 16.143 W | RRS James Cook JC087 |
1927806 | Water sample data | 2013-06-14 08:41:00 | 48.6485 N, 16.143 W | RRS James Cook JC087 |
2107726 | Water sample data | 2013-06-14 08:41:00 | 48.6485 N, 16.143 W | RRS James Cook JC087 |
2111878 | Water sample data | 2013-06-14 08:41:00 | 48.6485 N, 16.143 W | RRS James Cook JC087 |
1880705 | Water sample data | 2013-06-14 11:43:00 | 48.6485 N, 16.143 W | RRS James Cook JC087 |
1927818 | Water sample data | 2013-06-14 11:43:00 | 48.6485 N, 16.143 W | RRS James Cook JC087 |
2107738 | Water sample data | 2013-06-14 11:43:00 | 48.6485 N, 16.143 W | RRS James Cook JC087 |
2111891 | Water sample data | 2013-06-14 11:43:00 | 48.6485 N, 16.143 W | RRS James Cook JC087 |
1920820 | Fluorescence or pigments | 2014-07-13 10:43:58 | 49.02977 N, 16.31897 W | FS Meteor M108 |
2026606 | Hydrography time series at depth | 2014-07-15 00:00:01 | 49.02977 N, 16.31897 W | FS Meteor M108 |
2026631 | Hydrography time series at depth | 2014-07-15 00:00:24 | 49.02977 N, 16.31897 W | FS Meteor M108 |
2026618 | Hydrography time series at depth | 2014-07-15 00:00:42 | 49.02977 N, 16.31897 W | FS Meteor M108 |
2074669 | Water column chemistry | 2014-07-15 07:20:41 | 49.02977 N, 16.31897 W | FS Meteor M108 |
2159219 | Fluorescence or pigments | 2014-07-15 09:30:00 | 49.0295 N, 16.319 W | FS Meteor M108 |
2159207 | Water column chemistry | 2014-07-15 09:30:00 | 49.0295 N, 16.319 W | FS Meteor M108 |
2073617 | Water column chemistry | 2014-07-15 15:07:01 | 49.0295 N, 16.319 W | FS Meteor M108 |
1778785 | Water column chemistry | 2014-07-15 23:59:12 | 49.02977 N, 16.31897 W | FS Meteor M108 |
1927984 | Water sample data | 2015-06-24 00:32:00 | 49.02783 N, 16.415 W | RRS Discovery DY032 |
1879544 | Water sample data | 2015-06-24 15:55:00 | 49.04167 N, 16.41017 W | RRS Discovery DY032 |
1927996 | Water sample data | 2015-06-24 15:55:00 | 49.04167 N, 16.41017 W | RRS Discovery DY032 |
1879556 | Water sample data | 2015-06-25 09:40:00 | 48.84117 N, 16.522 W | RRS Discovery DY032 |
1928011 | Water sample data | 2015-06-25 09:40:00 | 48.84117 N, 16.522 W | RRS Discovery DY032 |
1879568 | Water sample data | 2015-06-25 17:20:00 | 48.94417 N, 16.59916 W | RRS Discovery DY032 |
1927947 | Water sample data | 2015-06-25 17:20:00 | 48.94417 N, 16.59916 W | RRS Discovery DY032 |
1928023 | Water sample data | 2015-06-25 17:20:00 | 48.94417 N, 16.59916 W | RRS Discovery DY032 |
1879581 | Water sample data | 2015-06-25 21:12:00 | 48.89167 N, 16.58556 W | RRS Discovery DY032 |
1927959 | Water sample data | 2015-06-25 21:12:00 | 48.89167 N, 16.58556 W | RRS Discovery DY032 |
1928035 | Water sample data | 2015-06-25 21:12:00 | 48.89167 N, 16.58556 W | RRS Discovery DY032 |
1879593 | Water sample data | 2015-06-26 10:00:00 | 48.84 N, 16.52583 W | RRS Discovery DY032 |
1928047 | Water sample data | 2015-06-26 10:00:00 | 48.84 N, 16.52583 W | RRS Discovery DY032 |
1879600 | Water sample data | 2015-06-27 15:54:00 | 49.074 N, 16.26133 W | RRS Discovery DY032 |
1928059 | Water sample data | 2015-06-27 15:54:00 | 49.074 N, 16.26133 W | RRS Discovery DY032 |
1928060 | Water sample data | 2015-06-27 19:00:00 | 49.07667 N, 16.25833 W | RRS Discovery DY032 |
1928072 | Water sample data | 2015-06-27 22:00:00 | 49.07367 N, 16.26383 W | RRS Discovery DY032 |
2148953 | Hydrography time series at depth | 2015-06-28 09:00:01 | 49.025 N, 16.3633 W | RRS Discovery DY032 |
1879612 | Water sample data | 2015-06-28 09:30:00 | 49.01283 N, 16.3955 W | RRS Discovery DY032 |
1879624 | Water sample data | 2015-06-29 15:20:00 | 48.81917 N, 16.52067 W | RRS Discovery DY032 |
1928084 | Water sample data | 2015-06-29 15:20:00 | 48.81917 N, 16.52067 W | RRS Discovery DY032 |
1879636 | Water sample data | 2015-06-30 20:21:00 | 49.21278 N, 16.47028 W | RRS Discovery DY032 |
1927960 | Water sample data | 2015-06-30 20:21:00 | 49.21278 N, 16.47028 W | RRS Discovery DY032 |
1928096 | Water sample data | 2015-06-30 20:21:00 | 49.21278 N, 16.47028 W | RRS Discovery DY032 |
2171870 | Hydrography time series at depth | 2015-07-01 11:30:01 | 49.01 N, 16.33666 W | RRS Discovery DY032 |
2171882 | Hydrography time series at depth | 2015-07-01 11:30:50 | 49.01 N, 16.33666 W | RRS Discovery DY032 |
1851006 | Water column chemistry | 2015-07-01 11:59:38 | 49.03056 N, 16.37222 W | RRS Discovery DY032 |
1879648 | Water sample data | 2015-07-01 14:10:00 | 48.98567 N, 16.285 W | RRS Discovery DY032 |
1928103 | Water sample data | 2015-07-01 14:10:00 | 48.98567 N, 16.285 W | RRS Discovery DY032 |
1850992 | Water column chemistry | 2015-07-01 23:58:05 | 49.03056 N, 16.37222 W | RRS Discovery DY032 |
1928115 | Water sample data | 2015-07-02 15:00:00 | 48.68217 N, 17.059 W | RRS Discovery DY032 |
1879661 | Water sample data | 2015-07-03 18:40:00 | 49.18277 N, 16.60056 W | RRS Discovery DY032 |
1927972 | Water sample data | 2015-07-03 18:40:00 | 49.18277 N, 16.60056 W | RRS Discovery DY032 |
1928127 | Water sample data | 2015-07-03 18:40:00 | 49.18277 N, 16.60056 W | RRS Discovery DY032 |
2201234 | CTD or STD cast | 2016-04-20 08:34:47 | 49.6016 N, 8.3609 W | RRS Discovery DY050 |
1874226 | Water sample data | 2016-04-20 08:55:00 | 49.6017 N, 8.3605 W | RRS Discovery DY050 |
2118945 | Water sample data | 2016-04-20 08:55:00 | 49.60091 N, 8.36638 W | RRS Discovery DY050 |
2138701 | Water sample data | 2016-04-20 08:55:00 | 49.60091 N, 8.36638 W | RRS Discovery DY050 |
2201246 | CTD or STD cast | 2016-04-22 14:12:48 | 49.0055 N, 16.3971 W | RRS Discovery DY050 |
1874238 | Water sample data | 2016-04-22 16:25:00 | 49.0055 N, 16.397 W | RRS Discovery DY050 |
2118957 | Water sample data | 2016-04-22 16:25:00 | 49.00545 N, 16.39723 W | RRS Discovery DY050 |
2138713 | Water sample data | 2016-04-22 16:25:00 | 49.00545 N, 16.39723 W | RRS Discovery DY050 |
2201258 | CTD or STD cast | 2016-04-24 08:18:03 | 49.0081 N, 16.4531 W | RRS Discovery DY050 |
2118969 | Water sample data | 2016-04-24 09:21:30 | 49.00818 N, 16.45308 W | RRS Discovery DY050 |
2138725 | Water sample data | 2016-04-24 09:21:30 | 49.00818 N, 16.45308 W | RRS Discovery DY050 |
1874251 | Water sample data | 2016-04-24 09:22:00 | 49.00813 N, 16.453 W | RRS Discovery DY050 |
1922826 | CTD or STD cast | 2016-04-24 15:00:00 | 49.00738 N, 16.49232 W | RRS Discovery DY050 |
1922838 | CTD or STD cast | 2016-04-24 15:00:00 | 49.00738 N, 16.49232 W | RRS Discovery DY050 |
2201271 | CTD or STD cast | 2016-04-27 14:08:29 | 49.0058 N, 16.3974 W | RRS Discovery DY050 |
2118970 | Water sample data | 2016-04-27 15:26:30 | 49.0058 N, 16.39745 W | RRS Discovery DY050 |
2138737 | Water sample data | 2016-04-27 15:26:30 | 49.0058 N, 16.39745 W | RRS Discovery DY050 |
1874263 | Water sample data | 2016-04-27 15:27:00 | 49.00578 N, 16.39743 W | RRS Discovery DY050 |
2026643 | Hydrography time series at depth | 2016-04-28 12:00:01 | 49.00046 N, 16.0055 W | RRS Discovery DY050 |
2026655 | Hydrography time series at depth | 2016-04-28 12:00:01 | 49.00046 N, 16.0055 W | RRS Discovery DY050 |
2026667 | Hydrography time series at depth | 2016-04-28 12:00:34 | 49.00046 N, 16.0055 W | RRS Discovery DY050 |
1920832 | Water column chemistry | 2016-04-28 12:20:24 | 49.04717 N, 16.30117 W | RRS Discovery DY050 |
2201283 | CTD or STD cast | 2016-04-28 12:23:49 | 49.0052 N, 16.397 W | RRS Discovery DY050 |
1874275 | Water sample data | 2016-04-28 13:55:00 | 49.00523 N, 16.39695 W | RRS Discovery DY050 |
2118982 | Water sample data | 2016-04-28 13:55:00 | 49.00524 N, 16.39697 W | RRS Discovery DY050 |
2138749 | Water sample data | 2016-04-28 13:55:00 | 49.00524 N, 16.39697 W | RRS Discovery DY050 |
2159268 | Water column chemistry | 2016-04-28 19:20:13 | 49.0283 N, 16.1807 W | RRS Discovery DY050 |
2201295 | CTD or STD cast | 2016-04-29 14:03:29 | 49.0053 N, 16.3975 W | RRS Discovery DY050 |
1874287 | Water sample data | 2016-04-29 16:19:00 | 49.00535 N, 16.39745 W | RRS Discovery DY050 |
2118994 | Water sample data | 2016-04-29 16:19:00 | 49.00534 N, 16.39746 W | RRS Discovery DY050 |
2138750 | Water sample data | 2016-04-29 16:19:00 | 49.00534 N, 16.39746 W | RRS Discovery DY050 |
2201302 | CTD or STD cast | 2016-04-30 13:08:42 | 49.0054 N, 16.3968 W | RRS Discovery DY050 |
1874299 | Water sample data | 2016-04-30 13:22:00 | 49.00533 N, 16.39667 W | RRS Discovery DY050 |
2119008 | Water sample data | 2016-04-30 13:22:00 | 49.00541 N, 16.39676 W | RRS Discovery DY050 |
2138762 | Water sample data | 2016-04-30 13:22:00 | 49.00541 N, 16.39676 W | RRS Discovery DY050 |
2201314 | CTD or STD cast | 2016-05-01 19:15:37 | 49.0056 N, 16.3969 W | RRS Discovery DY050 |
2119021 | Water sample data | 2016-05-01 19:38:30 | 49.00555 N, 16.3969 W | RRS Discovery DY050 |
2138774 | Water sample data | 2016-05-01 19:38:30 | 49.00555 N, 16.3969 W | RRS Discovery DY050 |
1874306 | Water sample data | 2016-05-01 19:39:00 | 49.0055 N, 16.39683 W | RRS Discovery DY050 |
2201326 | CTD or STD cast | 2016-05-02 17:49:15 | 49.0118 N, 16.3975 W | RRS Discovery DY050 |
1874318 | Water sample data | 2016-05-02 20:36:00 | 49.0118 N, 16.39683 W | RRS Discovery DY050 |
2119033 | Water sample data | 2016-05-02 20:36:00 | 49.0118 N, 16.39749 W | RRS Discovery DY050 |
2138786 | Water sample data | 2016-05-02 20:36:00 | 49.0118 N, 16.39749 W | RRS Discovery DY050 |
2201338 | CTD or STD cast | 2016-05-05 11:28:27 | 49.0053 N, 16.397 W | RRS Discovery DY050 |
1874331 | Water sample data | 2016-05-05 13:30:00 | 49.0053 N, 16.39702 W | RRS Discovery DY050 |
2119045 | Water sample data | 2016-05-05 13:30:00 | 49.00531 N, 16.39701 W | RRS Discovery DY050 |
2138798 | Water sample data | 2016-05-05 13:30:00 | 49.00531 N, 16.39701 W | RRS Discovery DY050 |
1816715 | CTD or STD cast | 2017-04-16 20:39:35 | 49.0544 N, 16.3395 W | RRS Discovery DY077 |
1874343 | Water sample data | 2017-04-16 20:52:00 | 49.05438 N, 16.33946 W | RRS Discovery DY077 |
1816727 | CTD or STD cast | 2017-04-16 22:27:48 | 49.0544 N, 16.3395 W | RRS Discovery DY077 |
1816739 | CTD or STD cast | 2017-04-17 00:34:20 | 49.0544 N, 16.3395 W | RRS Discovery DY077 |
1874355 | Water sample data | 2017-04-17 02:51:00 | 49.05433 N, 16.3395 W | RRS Discovery DY077 |
1922863 | Water column chemistry | 2017-04-18 00:20:25 | 49.04717 N, 16.30117 W | RRS Discovery DY077 |
1922851 | Fluorescence or pigments | 2017-04-18 16:11:27 | 49.04717 N, 16.30117 W | RRS Discovery DY077 |
1816740 | CTD or STD cast | 2017-04-19 09:02:33 | 48.9938 N, 16.3247 W | RRS Discovery DY077 |
1874367 | Water sample data | 2017-04-19 09:18:00 | 48.99381 N, 16.32473 W | RRS Discovery DY077 |
1816752 | CTD or STD cast | 2017-04-19 12:22:32 | 48.9528 N, 16.4322 W | RRS Discovery DY077 |
1874379 | Water sample data | 2017-04-19 12:47:00 | 48.95238 N, 16.43128 W | RRS Discovery DY077 |
1816764 | CTD or STD cast | 2017-04-19 15:19:37 | 49.0257 N, 16.4298 W | RRS Discovery DY077 |
1816776 | CTD or STD cast | 2017-04-20 22:11:06 | 48.9688 N, 16.4679 W | RRS Discovery DY077 |
1874380 | Water sample data | 2017-04-21 00:03:00 | 48.96882 N, 16.46792 W | RRS Discovery DY077 |
1816788 | CTD or STD cast | 2017-04-21 05:22:42 | 49.1176 N, 16.6171 W | RRS Discovery DY077 |
1816807 | CTD or STD cast | 2017-04-21 08:55:29 | 49.1881 N, 16.7005 W | RRS Discovery DY077 |
1816819 | CTD or STD cast | 2017-04-21 12:35:53 | 49.2009 N, 16.5667 W | RRS Discovery DY077 |
1816820 | CTD or STD cast | 2017-04-22 16:26:24 | 48.8358 N, 16.5213 W | RRS Discovery DY077 |
1874392 | Water sample data | 2017-04-22 16:49:00 | 48.83577 N, 16.52133 W | RRS Discovery DY077 |
1816832 | CTD or STD cast | 2017-04-23 12:04:31 | 49.0065 N, 16.3977 W | RRS Discovery DY077 |
1816844 | CTD or STD cast | 2017-04-24 12:39:51 | 48.9391 N, 16.2624 W | RRS Discovery DY077 |
1816856 | CTD or STD cast | 2017-04-24 15:47:48 | 48.9391 N, 16.2624 W | RRS Discovery DY077 |
1816868 | CTD or STD cast | 2017-04-24 17:46:43 | 48.9965 N, 16.3681 W | RRS Discovery DY077 |
1816881 | CTD or STD cast | 2017-04-24 19:37:50 | 48.9066 N, 16.3951 W | RRS Discovery DY077 |
1816893 | CTD or STD cast | 2017-04-25 14:22:04 | 48.9888 N, 16.3956 W | RRS Discovery DY077 |
1874411 | Water sample data | 2017-04-25 15:06:00 | 48.98882 N, 16.39555 W | RRS Discovery DY077 |
1816900 | CTD or STD cast | 2017-04-26 12:01:42 | 48.8679 N, 16.5862 W | RRS Discovery DY077 |
1816912 | CTD or STD cast | 2017-04-26 14:56:15 | 48.9147 N, 16.7024 W | RRS Discovery DY077 |
1816924 | CTD or STD cast | 2017-04-26 18:01:17 | 48.8255 N, 16.7048 W | RRS Discovery DY077 |
1816936 | CTD or STD cast | 2017-04-28 08:48:32 | 48.7853 N, 16.7799 W | RRS Discovery DY077 |
1816948 | CTD or STD cast | 2017-04-28 10:57:32 | 48.7487 N, 16.6749 W | RRS Discovery DY077 |
2014678 | CTD or STD cast | 2018-05-22 12:07:44 | 49.0033 N, 16.3946 W | RRS James Cook JC165 |
2014691 | CTD or STD cast | 2018-05-22 14:03:19 | 49.0033 N, 16.3946 W | RRS James Cook JC165 |
2115787 | Water sample data | 2018-05-22 14:29:30 | 49.00328 N, 16.3946 W | RRS James Cook JC165 |
1928987 | Water sample data | 2018-05-22 14:30:00 | 49.00328 N, 16.3946 W | RRS James Cook JC165 |
2014709 | CTD or STD cast | 2018-05-23 12:29:14 | 48.988 N, 16.3888 W | RRS James Cook JC165 |
1928999 | Water sample data | 2018-05-23 14:58:00 | 48.988 N, 16.38878 W | RRS James Cook JC165 |
2115799 | Water sample data | 2018-05-23 14:58:00 | 48.988 N, 16.38878 W | RRS James Cook JC165 |
2014710 | CTD or STD cast | 2018-05-25 07:28:40 | 49.0026 N, 16.4933 W | RRS James Cook JC165 |
1929002 | Water sample data | 2018-05-25 07:38:00 | 49.00407 N, 16.49312 W | RRS James Cook JC165 |
2115806 | Water sample data | 2018-05-25 07:38:20 | 49.00407 N, 16.49312 W | RRS James Cook JC165 |
2048835 | Hydrography time series at depth | 2018-05-25 12:00:01 | 48.99662 N, 16.49562 W | RRS James Cook JC165 |
2014722 | CTD or STD cast | 2018-05-25 12:09:18 | 48.9945 N, 16.4008 W | RRS James Cook JC165 |
2027855 | Currents -subsurface Eulerian | 2018-05-25 13:17:12 | 48.99662 N, 16.49553 W | RRS James Cook JC165 |
2027843 | Currents -subsurface Eulerian | 2018-05-25 13:20:02 | 48.99662 N, 16.49553 W | RRS James Cook JC165 |
1929014 | Water sample data | 2018-05-25 14:08:00 | 48.99448 N, 16.4008 W | RRS James Cook JC165 |
2115818 | Water sample data | 2018-05-25 14:08:00 | 48.99448 N, 16.4008 W | RRS James Cook JC165 |
1929026 | Water sample data | 2018-05-27 14:17:00 | 49.00638 N, 16.47153 W | RRS James Cook JC165 |
2115831 | Water sample data | 2018-05-27 14:17:00 | 49.00638 N, 16.47153 W | RRS James Cook JC165 |
2014734 | CTD or STD cast | 2018-05-27 14:22:35 | 49.0064 N, 16.4715 W | RRS James Cook JC165 |
2014746 | CTD or STD cast | 2018-05-27 16:07:57 | 49.0064 N, 16.4715 W | RRS James Cook JC165 |
2115843 | Water sample data | 2018-05-27 17:28:30 | 49.00638 N, 16.47152 W | RRS James Cook JC165 |
1929038 | Water sample data | 2018-05-27 17:29:00 | 49.00638 N, 16.47152 W | RRS James Cook JC165 |
1929051 | Water sample data | 2018-05-29 14:08:00 | 48.00093 N, 16.50327 W | RRS James Cook JC165 |
2115855 | Water sample data | 2018-05-29 14:08:00 | 48.00093 N, 16.50327 W | RRS James Cook JC165 |
2014758 | CTD or STD cast | 2018-05-29 14:09:48 | 49.001 N, 16.5033 W | RRS James Cook JC165 |
2014771 | CTD or STD cast | 2018-06-01 13:03:19 | 49.0024 N, 16.5085 W | RRS James Cook JC165 |
2115867 | Water sample data | 2018-06-01 13:22:30 | 49.00237 N, 16.50855 W | RRS James Cook JC165 |
1929063 | Water sample data | 2018-06-01 13:23:00 | 49.00237 N, 16.50855 W | RRS James Cook JC165 |
2014783 | CTD or STD cast | 2018-06-01 15:00:37 | 49.0024 N, 16.5085 W | RRS James Cook JC165 |
2115879 | Water sample data | 2018-06-01 16:43:30 | 49.00235 N, 16.50855 W | RRS James Cook JC165 |
1929075 | Water sample data | 2018-06-01 16:44:00 | 49.00235 N, 16.50855 W | RRS James Cook JC165 |
2012125 | Water column chemistry | 2018-06-04 00:10:00 | 48.86432 N, 16.42318 W | RRS James Cook JC165 |
2026723 | Water column chemistry | 2018-06-04 09:20:00 | 48.86432 N, 16.42318 W | RRS James Cook JC165 |
2013012 | Hydrography time series at depth | 2018-06-04 09:30:00 | 48.86432 N, 16.42318 W | RRS James Cook JC165 |
2012997 | Hydrography time series at depth | 2018-06-04 09:30:01 | 48.86432 N, 16.42318 W | RRS James Cook JC165 |
2046146 | Hydrography time series at depth | 2018-06-04 09:30:01 | 48.86432 N, 16.42318 W | RRS James Cook JC165 |
2013000 | Hydrography time series at depth | 2018-06-04 09:30:04 | 48.86432 N, 16.42318 W | RRS James Cook JC165 |
1975716 | PAR radiance and irradiance | 2018-06-04 09:47:05 | 48.86432 N, 16.42318 W | RRS James Cook JC165 |
2004229 | PAR radiance and irradiance | 2018-06-04 09:47:05 | 48.86432 N, 16.42318 W | RRS James Cook JC165 |
2014980 | Water column chemistry | 2018-06-04 09:50:59 | 48.86432 N, 16.42318 W | RRS James Cook JC165 |
2022433 | Fluorescence or pigments | 2018-06-04 10:23:06 | 48.86432 N, 16.42318 W | RRS James Cook JC165 |
2012069 | Water column chemistry | 2018-06-04 12:11:00 | 48.86432 N, 16.42318 W | RRS James Cook JC165 |
1928188 | Water sample data | 2018-06-07 08:17:00 | 48.94508 N, 16.8184 W | RRS James Cook JC165 |
1929087 | Water sample data | 2018-06-07 12:21:00 | 48.94508 N, 16.4267 W | RRS James Cook JC165 |
2115880 | Water sample data | 2018-06-07 12:21:00 | 48.94508 N, 16.4267 W | RRS James Cook JC165 |
2014795 | CTD or STD cast | 2018-06-07 12:23:29 | 48.94508 N, 16.4267 W | RRS James Cook JC165 |
1929099 | Water sample data | 2018-06-07 14:27:00 | 48.94508 N, 16.4267 W | RRS James Cook JC165 |
2115892 | Water sample data | 2018-06-07 14:27:00 | 48.94508 N, 16.4267 W | RRS James Cook JC165 |
2014802 | CTD or STD cast | 2018-06-07 14:32:08 | 48.94508 N, 16.4267 W | RRS James Cook JC165 |
1989607 | Water sample data | 2019-06-23 14:15:00 | 49.13787 N, 13.0504 W | RRS Discovery DY103 |
2001625 | Water sample data | 2019-06-23 14:15:00 | 49.13787 N, 13.0504 W | RRS Discovery DY103 |
2004101 | Water sample data | 2019-06-23 14:15:00 | 49.13787 N, 13.0504 W | RRS Discovery DY103 |
1989619 | Water sample data | 2019-06-24 05:27:00 | 49.00008 N, 16.50042 W | RRS Discovery DY103 |
2001637 | Water sample data | 2019-06-24 05:27:00 | 49.00008 N, 16.50042 W | RRS Discovery DY103 |
2004113 | Water sample data | 2019-06-24 05:27:00 | 49.00008 N, 16.50042 W | RRS Discovery DY103 |
1989620 | Water sample data | 2019-06-25 14:59:00 | 48.9718 N, 16.37257 W | RRS Discovery DY103 |
2001649 | Water sample data | 2019-06-25 14:59:00 | 48.9718 N, 16.37257 W | RRS Discovery DY103 |
2004125 | Water sample data | 2019-06-25 14:59:00 | 48.9718 N, 16.37257 W | RRS Discovery DY103 |
1989632 | Water sample data | 2019-06-29 16:17:00 | 48.94283 N, 16.48617 W | RRS Discovery DY103 |
2001650 | Water sample data | 2019-06-29 16:17:00 | 48.94283 N, 16.48617 W | RRS Discovery DY103 |
2004137 | Water sample data | 2019-06-29 16:17:00 | 48.94283 N, 16.48617 W | RRS Discovery DY103 |
2027818 | Currents -subsurface Eulerian | 2019-06-30 12:00:00 | 48.5805 N, 16.27624 W | RRS Discovery DY103 |
2027831 | Currents -subsurface Eulerian | 2019-06-30 12:00:00 | 48.5805 N, 16.27624 W | RRS Discovery DY103 |
1989644 | Water sample data | 2019-06-30 13:00:00 | 49.03823 N, 16.53018 W | RRS Discovery DY103 |
2001662 | Water sample data | 2019-06-30 13:00:00 | 49.03823 N, 16.53018 W | RRS Discovery DY103 |
2004149 | Water sample data | 2019-06-30 13:00:00 | 49.03823 N, 16.53018 W | RRS Discovery DY103 |
1989656 | Water sample data | 2019-07-01 13:22:00 | 48.94342 N, 16.48997 W | RRS Discovery DY103 |
2001674 | Water sample data | 2019-07-01 13:22:00 | 48.94342 N, 16.48997 W | RRS Discovery DY103 |
2004150 | Water sample data | 2019-07-01 13:22:00 | 48.94342 N, 16.48997 W | RRS Discovery DY103 |
1989668 | Water sample data | 2019-07-01 14:35:00 | 48.99973 N, 16.49993 W | RRS Discovery DY103 |
2001686 | Water sample data | 2019-07-01 14:35:00 | 48.99973 N, 16.49993 W | RRS Discovery DY103 |
2004162 | Water sample data | 2019-07-01 14:35:00 | 48.99973 N, 16.49993 W | RRS Discovery DY103 |
2001698 | Water sample data | 2019-07-02 09:58:00 | 48.99997 N, 16.50102 W | RRS Discovery DY103 |
2004174 | Water sample data | 2019-07-02 09:58:00 | 48.99997 N, 16.50102 W | RRS Discovery DY103 |
2052115 | Hydrography time series at depth | 2019-07-03 14:47:05 | 48.9656 N, 16.36905 W | RRS Discovery DY103 |
2026907 | Hydrography time series at depth | 2019-07-03 15:00:01 | 48.9656 N, 16.36905 W | RRS Discovery DY103 |
2073248 | Water column chemistry | 2019-07-03 15:01:57 | 48.9656 N, 16.36905 W | RRS Discovery DY103 |
2026919 | Hydrography time series at depth | 2019-07-03 15:15:00 | 48.9656 N, 16.36905 W | RRS Discovery DY103 |
1989681 | Water sample data | 2019-07-03 15:16:00 | 48.96148 N, 16.3742 W | RRS Discovery DY103 |
2001705 | Water sample data | 2019-07-03 15:16:00 | 48.96148 N, 16.3742 W | RRS Discovery DY103 |
2004186 | Water sample data | 2019-07-03 15:16:00 | 48.96148 N, 16.3742 W | RRS Discovery DY103 |
2073261 | Water column chemistry | 2019-07-03 15:30:00 | 48.9656 N, 16.36905 W | RRS Discovery DY103 |
2143383 | Water column chemistry | 2019-07-04 00:20:02 | 48.9656 N, 16.36905 W | RRS Discovery DY103 |
1989693 | Water sample data | 2019-07-04 08:28:00 | 48.99998 N, 16.50032 W | RRS Discovery DY103 |
2001717 | Water sample data | 2019-07-04 08:28:00 | 48.99998 N, 16.50032 W | RRS Discovery DY103 |
2004198 | Water sample data | 2019-07-04 08:28:00 | 48.99998 N, 16.50032 W | RRS Discovery DY103 |
1989700 | Water sample data | 2019-07-05 10:01:00 | 48.9615 N, 16.39962 W | RRS Discovery DY103 |
2001729 | Water sample data | 2019-07-05 10:01:00 | 48.9615 N, 16.39962 W | RRS Discovery DY103 |
2004205 | Water sample data | 2019-07-05 10:01:00 | 48.9615 N, 16.39962 W | RRS Discovery DY103 |
1989712 | Water sample data | 2019-07-05 13:02:00 | 49.00002 N, 16.49993 W | RRS Discovery DY103 |
2001730 | Water sample data | 2019-07-05 13:02:00 | 49.00002 N, 16.49993 W | RRS Discovery DY103 |
2004217 | Water sample data | 2019-07-05 13:02:00 | 49.00002 N, 16.49993 W | RRS Discovery DY103 |
2051726 | Water sample data | 2020-11-19 04:23:00 | 48.99973 N, 16.5003 W | RRS Discovery DY116 |
2051787 | Water sample data | 2020-11-19 04:23:00 | 48.99973 N, 16.5003 W | RRS Discovery DY116 |
2051843 | Water sample data | 2020-11-19 04:23:00 | 48.99973 N, 16.5003 W | RRS Discovery DY116 |
2051738 | Water sample data | 2020-11-20 10:51:30 | 49.0002 N, 16.4998 W | RRS Discovery DY116 |
2051799 | Water sample data | 2020-11-20 10:51:30 | 49.0002 N, 16.4998 W | RRS Discovery DY116 |
2051855 | Water sample data | 2020-11-20 10:51:30 | 49.0002 N, 16.4998 W | RRS Discovery DY116 |
2048847 | Currents -subsurface Eulerian | 2020-11-21 02:00:31 | 49.015 N, 16.442 W | RRS Discovery DY116 |
2048859 | Currents -subsurface Eulerian | 2020-11-21 02:00:31 | 49.015 N, 16.442 W | RRS Discovery DY116 |
2052096 | Hydrography time series at depth | 2020-11-21 12:14:02 | 48.9676 N, 16.43582 W | RRS Discovery DY116 |
2052754 | Water column chemistry | 2020-11-21 13:24:13 | 48.96767 N, 16.43583 W | RRS Discovery DY116 |
2048860 | Water column chemistry | 2020-11-21 20:58:05 | 48.9676 N, 16.43582 W | RRS Discovery DY116 |
2048872 | Water column chemistry | 2020-11-21 23:26:43 | 48.9676 N, 16.43582 W | RRS Discovery DY116 |
2051751 | Water sample data | 2020-11-22 16:34:30 | 48.97848 N, 16.40918 W | RRS Discovery DY116 |
2051806 | Water sample data | 2020-11-22 16:34:30 | 48.97848 N, 16.40918 W | RRS Discovery DY116 |
2051867 | Water sample data | 2020-11-22 16:34:30 | 48.97848 N, 16.40918 W | RRS Discovery DY116 |
2051763 | Water sample data | 2020-11-23 05:20:00 | 49.0001 N, 16.49968 W | RRS Discovery DY116 |
2051818 | Water sample data | 2020-11-23 05:20:00 | 49.0001 N, 16.49968 W | RRS Discovery DY116 |
2051879 | Water sample data | 2020-11-23 05:20:00 | 49.0001 N, 16.49968 W | RRS Discovery DY116 |
2051775 | Water sample data | 2020-11-23 12:13:00 | 49.00058 N, 16.49898 W | RRS Discovery DY116 |
2051831 | Water sample data | 2020-11-23 12:13:00 | 49.00058 N, 16.49898 W | RRS Discovery DY116 |
2051880 | Water sample data | 2020-11-23 12:13:00 | 49.00058 N, 16.49898 W | RRS Discovery DY116 |
2054005 | Currents -subsurface Eulerian | 2021-03-31 15:30:00 | 48.9951 N, 16.4081 W | RRS Discovery DY130 |
2054017 | Currents -subsurface Eulerian | 2021-03-31 15:30:00 | 48.9951 N, 16.4081 W | RRS Discovery DY130 |
2205954 | Water column chemistry | 2021-04-03 11:14:32 | 49.0 N, 16.3 W | RRS Discovery DY130 |
2074725 | Water column chemistry | 2021-04-03 11:20:24 | 48.9593 N, 16.4373 W | RRS Discovery DY130 |
2159281 | Hydrography time series at depth | 2021-04-03 12:00:03 | 48.9593 N, 16.4373 W | RRS Discovery DY130 |
2159188 | Water column chemistry | 2021-04-03 12:10:00 | 48.9593 N, 16.4373 W | RRS Discovery DY130 |
2162043 | Water column chemistry | 2021-04-03 13:55:00 | 48.9593 N, 16.4373 W | RRS Discovery DY130 |
2074670 | Hydrography time series at depth | 2021-04-12 00:01:00 | 48.9593 N, 16.4373 W | RRS Discovery DY130 |
2074682 | Hydrography time series at depth | 2021-04-12 00:01:00 | 48.9593 N, 16.4373 W | RRS Discovery DY130 |
2074694 | Hydrography time series at depth | 2021-04-12 00:01:00 | 48.9593 N, 16.4373 W | RRS Discovery DY130 |
2074701 | Hydrography time series at depth | 2021-04-12 00:01:00 | 48.9593 N, 16.4373 W | RRS Discovery DY130 |
2074713 | Hydrography time series at depth | 2021-04-12 00:01:00 | 48.9593 N, 16.4373 W | RRS Discovery DY130 |
2153470 | Water sample data | 2022-05-02 19:16:00 | 48.554 N, 9.9291 W | RRS James Cook JC231 |
2153598 | Water sample data | 2022-05-02 19:16:00 | 48.554 N, 9.9291 W | RRS James Cook JC231 |
2153586 | Water sample data | 2022-05-03 15:03:00 | 48.70113 N, 17.1232 W | RRS James Cook JC231 |
2153469 | Water sample data | 2022-05-04 06:56:00 | 48.70751 N, 17.1232 W | RRS James Cook JC231 |
2153482 | Water sample data | 2022-05-04 12:17:30 | 48.967 N, 16.35743 W | RRS James Cook JC231 |
2153605 | Water sample data | 2022-05-04 12:17:30 | 48.967 N, 16.35743 W | RRS James Cook JC231 |
2153494 | Water sample data | 2022-05-05 07:43:00 | 48.9562 N, 16.3999 W | RRS James Cook JC231 |
2153617 | Water sample data | 2022-05-05 07:43:00 | 48.9562 N, 16.3999 W | RRS James Cook JC231 |
2153501 | Water sample data | 2022-05-06 12:34:30 | 49.0001 N, 16.5 W | RRS James Cook JC231 |
2153629 | Water sample data | 2022-05-06 12:34:30 | 49.0001 N, 16.5 W | RRS James Cook JC231 |
2201664 | Water column chemistry | 2022-05-07 10:07:01 | 48.58001 N, 16.2567 W | RRS James Cook JC231 |
2201861 | Water column chemistry | 2022-05-07 11:14:01 | 49.0 N, 16.5 W | RRS James Cook JC231 |
2201178 | Water column chemistry | 2022-05-07 11:14:02 | 48.9615 N, 16.4377 W | RRS James Cook JC231 |
2206736 | Water column chemistry | 2022-05-07 11:30:00 | 48.5769 N, 16.2626 W | RRS James Cook JC231 |
2201222 | Meteorology -meteorological data buoy | 2022-05-07 13:17:05 | 48.9697 N, 8.2783 W | RRS James Cook JC231 |
2206668 | Hydrography time series at depth | 2022-05-07 16:00:00 | 48.9615 N, 16.4377 W | RRS James Cook JC231 |
2153513 | Water sample data | 2022-05-08 14:20:00 | 49.00537 N, 16.50157 W | RRS James Cook JC231 |
2153630 | Water sample data | 2022-05-08 14:20:00 | 49.00537 N, 16.50157 W | RRS James Cook JC231 |
2153525 | Water sample data | 2022-05-10 16:29:30 | 48.99817 N, 16.45 W | RRS James Cook JC231 |
2153642 | Water sample data | 2022-05-10 16:29:30 | 48.99817 N, 16.45 W | RRS James Cook JC231 |
2153537 | Water sample data | 2022-05-11 10:17:30 | 48.94755 N, 16.47355 W | RRS James Cook JC231 |
2153654 | Water sample data | 2022-05-11 10:17:30 | 48.94755 N, 16.47355 W | RRS James Cook JC231 |
2153549 | Water sample data | 2022-05-13 14:20:00 | 49.008 N, 16.47967 W | RRS James Cook JC231 |
2153666 | Water sample data | 2022-05-13 14:20:00 | 49.008 N, 16.47967 W | RRS James Cook JC231 |
2153550 | Water sample data | 2022-05-14 16:39:00 | 48.97383 N, 16.46817 W | RRS James Cook JC231 |
2153678 | Water sample data | 2022-05-14 16:39:00 | 48.97383 N, 16.46817 W | RRS James Cook JC231 |
2153562 | Water sample data | 2022-05-14 20:40:30 | 48.9735 N, 16.45367 W | RRS James Cook JC231 |
2153691 | Water sample data | 2022-05-14 20:40:30 | 48.9735 N, 16.45367 W | RRS James Cook JC231 |
2153574 | Water sample data | 2022-05-15 10:43:00 | 48.99983 N, 16.5 W | RRS James Cook JC231 |
2153709 | Water sample data | 2022-05-15 10:43:00 | 48.99983 N, 16.5 W | RRS James Cook JC231 |
2202680 | CTD or STD cast | 2022-08-26 12:29:07 | 48.84167 N, 16.5033 W | RRS James Cook JC237 |
2201652 | Water column chemistry | 2023-05-12 19:08:17 | 48.9615 N, 16.4377 W | RRS James Cook JC247 |